【題目】某市為了鼓勵居民節(jié)約用水,決定實行兩級收費(fèi)制度.若每月用水量不超過14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價m元收費(fèi);若每月用水量超過14噸,則超過部分每噸按市場價n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價和市場價分別是多少?
(2)設(shè)每月用水量為x噸(x>14),應(yīng)交水費(fèi)為y元,請寫出y與x之間的函數(shù)關(guān)系式;
【答案】(1)每噸水的政府補(bǔ)貼優(yōu)惠價元,市場調(diào)節(jié)價為元;(2)
【解析】
(1)設(shè)每噸水的政府補(bǔ)貼優(yōu)惠價為元,市場調(diào)節(jié)價為元,列出相應(yīng)二元一次方程組,求解出m,n的值即可.
(2)根據(jù)用水量和水費(fèi)的關(guān)系,寫出y與x之間的函數(shù)關(guān)系式.
解:(1)設(shè)每噸水的政府補(bǔ)貼優(yōu)惠價為元,市場調(diào)節(jié)價為元.
,
解得:,
答:每噸水的政府補(bǔ)貼優(yōu)惠價元,市場調(diào)節(jié)價為元.
(2)當(dāng)時,,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[m﹣1,1+m,﹣2m]的函數(shù)的一些結(jié)論:①當(dāng)m=3時,函數(shù)圖象的頂點(diǎn)坐標(biāo)是(﹣1,﹣8);②當(dāng)m>1時,函數(shù)圖象截x軸所得的線段長度大于3;③當(dāng)m<0時,函數(shù)在x>時,y隨x的增大而減。虎懿徽m取何值,函數(shù)圖象經(jīng)過兩個定點(diǎn).其中正確的結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),的頂點(diǎn)、的坐標(biāo)分別為,,并且滿足,.
(1)求、兩點(diǎn)的坐標(biāo).
(2)把沿著軸折疊得到,動點(diǎn)從點(diǎn)出發(fā)沿射線以每秒個單位的速度運(yùn)動.設(shè)點(diǎn)的運(yùn)動時間為秒,的面積為,請用含有的式子表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項目之一.蘭州市某學(xué)校為了解今年九年級學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級學(xué)生足球運(yùn)球的測試成績作為一個樣本,按A,B,C,D四個等級進(jìn)行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)
根據(jù)所給信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)所抽取學(xué)生的足球運(yùn)球測試成績的中位數(shù)會落在 等級;
(4)該校九年級有300名學(xué)生,請估計足球運(yùn)球測試成績達(dá)到A級的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊中,點(diǎn),分別在邊,上.
(1)如圖,若,以為邊作等邊,交于點(diǎn),連接.
求證:①;
②平分.
(2)如圖,若,作,交的延長線于點(diǎn),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點(diǎn),點(diǎn)E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象交x軸于點(diǎn)B (6,0),交正比例函數(shù)的圖象于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為4,S△ABO=12.求一次函數(shù)和正比例函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時,有如下探討:
甲同學(xué):我發(fā)現(xiàn)這種多邊形不一定是正多邊形.如圓內(nèi)接矩形不一定是正方形.
乙同學(xué):我知道邊數(shù)為3時,它是正三角形;我想,邊數(shù)為5時,它可能也是正五邊形…
丙同學(xué):我發(fā)現(xiàn)邊數(shù)為6時,它也不一定是正六邊形.如圖2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,這樣構(gòu)造的六邊形ADBECF不是正六邊形.
(1)如圖1,若圓內(nèi)接五邊形ABCDE的各內(nèi)角均相等,則∠ABC= °,并簡要說明圓內(nèi)接五邊形ABCDE為正五邊形的理由;
(2)如圖2,請證明丙同學(xué)構(gòu)造的六邊形各內(nèi)角相等;
(3)根據(jù)以上探索過程,就問題“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”的結(jié)論與“邊數(shù)n(n≥3,n為整數(shù))”的關(guān)系,提出你的猜想(不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P的“d值”定義如下:若點(diǎn)Q為圓上任意一點(diǎn),線段PQ長度的最大值與最小值之差即為點(diǎn)P的“d值”,記為dP.特別的,當(dāng)點(diǎn)P,Q重合時,線段PQ的長度為0.當(dāng)⊙O的半徑為2時:
(1)若點(diǎn)C(﹣,0),D(3,4),則dc= ,dp= ;
(2)若在直線y=2x+2上存在點(diǎn)P,使得dP=2,求出點(diǎn)P的橫坐標(biāo);
(3)直線y=﹣x+b(b>0)與x軸,y軸分別交于點(diǎn)A,B.若線段AB上存在點(diǎn)P,使得2≤dP<3,請你直接寫出b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com