【題目】分解因式a2﹣9的結果是 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點為(1,4)的拋物線與直線交于點A(2,2),直線與軸交于點B與軸交于點C
(1)求的值及拋物線的解析式
(2)P為拋物線上的點,點P關于直線AB的對稱軸點在軸上,求點P的坐標
(3)點D為軸上方拋物線上的一點,點E為軸上一點,以A 、B、E、D為頂點的四邊為平行四邊形時,直接寫出點E的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知同一平面內(nèi),∠AOB=90゜,∠AOC=60゜.
(1)填空:∠COB=;
(2)如OD平分∠BOC,OE平分∠AOC,直接寫出∠DOE的度數(shù)為;
(3)試問在(2)的條件下,如果將題目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他條件不變,你能求出∠DOE的度數(shù)嗎?若能,請你寫出求解過程;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在方格紙中的△ABC經(jīng)過變換得到△DEF,正確的變換是( )
A.把△ABC向右平移6格
B.把△ABC向右平移4格,再向上平移1格
C.把△ABC繞著點A順時針旋轉(zhuǎn)90°,再向右平移6格
D.把△ABC繞著點A逆時針旋轉(zhuǎn)90°,再向右平移6格
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了更好治理河流水質(zhì),保護環(huán)境,某市治污公司決定購買10臺污水處理設備,現(xiàn)有A,B兩種型號的設備,其中每臺的價格,月處理污水量如表:
A型 | B型 | |
價格(萬元/臺) | a | b |
處理污水量(噸/月) | 220 | 180 |
經(jīng)調(diào)查:購買一臺A型設備比購買一臺B型設備多3萬元,購買2臺A型設備比購買3臺B型設備少3萬元.
(1)求a,b的值;
(2)經(jīng)預算:市治污公司購買污水處理設備的資金不超過100萬元,你認為該公司有哪幾種購買方案;
(3)在(2)問的條件下,若每月要求處理的污水量不低于1880噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,E為格點,B,F為小正方形邊的中點,C為AE,BF的延長線的交點.
(1)AE的長等于________;
(2)若點P在線段AC上,點Q在線段BC上,且滿足AP = PQ = QB,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ,并簡要說明點P,Q的位置是如何找到的(不要求證明)________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)試判斷直線AB與直線CD的位置關系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com