(2008•佛山)對于任意的正整數(shù)n,所有形如n3+3n2+2n的數(shù)的最大公約數(shù)是什么?

【答案】分析:把所給的多項式利用因式分解寫成乘積的形式:n3+3n2+2n=n(n+1)(n+2).因為n、n+1、n+2是連續(xù)的三個正整數(shù),所以其中必有一個是2的倍數(shù)、一個是3的倍數(shù),可知n3+3n2+2n=n(n+1)(n+2)一定是6的倍數(shù),所以最大公約數(shù)為6.
解答:解:n3+3n2+2n=n(n+1)(n+2),
∵n、n+1、n+2是連續(xù)的三個正整數(shù),(2分)
∴其中必有一個是2的倍數(shù)、一個是3的倍數(shù),(3分)
∴n3+3n2+2n=n(n+1)(n+2)一定是6的倍數(shù),(4分)
又∵n3+3n2+2n的最小值是6,(5分)
(如果不說明6是最小值,則需要說明n、n+1、n+2中除了一個是2的倍數(shù)、一個是3的倍數(shù),第三個不可能有公因數(shù).否則從此步以下不給分)
∴最大公約數(shù)為6.(6分)
點評:主要考查了利用因式分解的方法解決實際問題.要先分解因式并根據(jù)其實際意義來求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2008•佛山)我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(11)(解析版) 題型:解答題

(2008•佛山)我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年廣東省佛山市中考數(shù)學試卷(解析版) 題型:解答題

(2008•佛山)我們所學的幾何知識可以理解為對“構圖”的研究:根據(jù)給定的(或構造的)幾何圖形提出相關的概念和問題(或者根據(jù)問題構造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關于圓的問題進行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構造的圖形提出一個結論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

同步練習冊答案