【題目】如圖,AB為⊙O的直徑,射線AP交⊙O于C點,∠PCO的平分線交⊙O于D點,過點D作交AP于E點.
(1)求證:DE為⊙O的切線;
(2)若DE=3,AC=8,求直徑AB的長.
【答案】(1)證明見解析;(2)10.
【解析】
試題(1)連接OD若要證明DE為⊙O的切線,只要證明∠DOE=90°即可;
(2)過點O作OF⊥AP于F,利用垂徑定理以及勾股定理計算即可.
試題解析:連接OD.
∵OC=OD,
∴∠1=∠3.
∵CD平分∠PCO,
∴∠1=∠2.
∴∠2=∠3.
∵DE⊥AP,
∴∠2+∠EDC=90°.
∴∠3+∠EDC=90°.
即∠ODE=90°.
∴OD⊥DE.
∴DE為⊙O的切線.
(2)過點O作OF⊥AP于F.
由垂徑定理得,AF=CF.
∵AC=8,
∴AF=4.
∵OD⊥DE,DE⊥AP,
∴四邊形ODEF為矩形.
∴OF=DE.
∵DE=3,
∴OF=3.
在Rt△AOF中,OA2=OF2+AF2=42+32=25.
∴OA=5.
∴AB=2OA=10.
科目:初中數(shù)學 來源: 題型:
【題目】某中學為推動“時刻聽黨話 永遠跟黨走”校園主題教育活動,計劃開展四項活動:A:黨史演講比賽,B:黨史手抄報比賽,C:黨史知識競賽,D:紅色歌詠比賽.校團委對學生最喜歡的一項活動進行調查,隨機抽取了部分學生,并將調查結果繪制成圖1,圖2兩幅不完整的統(tǒng)計圖.請結合圖中信息解答下列問題:
(1)本次共調查了 名學生;
(2)將圖1的統(tǒng)計圖補充完整;
(3)已知在被調查的最喜歡“黨史知識競賽”項目的4個學生中只有1名女生,現(xiàn)從這4名學生中任意抽取2名學生參加該項目比賽,請用畫樹狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,∠BAC的平分線交BC邊于G,AG的中垂線與CB的延長線交于E,與AB、AC、DC分別交于點M,N,F,下列結論:①tan∠E=,②△AGC≌△EMG,③四邊形AMGN是菱形,④S△CFN=S四邊形AMGN,其中正確的是______(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等邊三角形ABC在平面直角坐標系中的位置如圖所示,C(1,0),點A在y軸的正半軸上,把等邊三角形ABC沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉120°,經(jīng)過2018次翻轉之后,點C的坐標是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了創(chuàng)建“全國文明城市”,鄂州市積極主動建設美麗家園,某社區(qū)擬將一塊面積為1000m2的空地進行綠化,一部分種草,剩余部分栽花,設種草面積為x(m2),種草費用y1(元)與x(m2)的函數(shù)關系式為y1=,其圖象如圖所示:栽花所需費用y2(元)與x(m2)的函數(shù)關系如表所示:
x(m2) | 100 | 200 | 300 |
y2(元) | 3900 | 7600 | 11100 |
(1)請直接寫出y1與種草面積x(m2)的函數(shù)關系式,y2與栽花面積x(m2)的函數(shù)關系式;
(2)設這塊1000m2空地的綠化總費用為W(元),請利用W與種草面積x(m2)的函數(shù)關系式,求出綠化總費用W的最大值;
(3)若種草部分的面積不少于600m2,栽花部分的面積不少于200m2,請求出綠化總費用W的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知方程,
(1)求證:方程一定有兩個不相等的實數(shù)根;
(2)取何值時,方程二根中一個比3大,一個比3小。(可用數(shù)形結合來解)
(3)取何值時方程的兩個根異號且負的實數(shù)根的絕對值大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E是正方形內部一點,連接BE,CE,且∠ABE=∠BCE,點P是邊AB上一動點,連接PD,PE,則PD+PE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,半徑BO與AC相交于點D,BO的延長線與⊙O交于點F,與過點C的切線NC交于點M,過點D作DE⊥BC,垂足為E,連接CF,已知MF=FC.
(1)求證:∠M=30°;
(2)①若=,求的值;
②當△DEC的面積是它最大值的時,求的值.
(3)若DE=AB,試判斷點D所在的位置.(請直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AC=8,BC=10,AC>AB.
(1)用尺規(guī)作圖法在△ABC內求作一點D,使點D到兩點A、C的距離相等,又到邊AC、BC的距離相等(保留作圖痕跡,不寫作法).
(2)若△ACD的周長為18,求△BCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com