【題目】如圖所示△ABC中,∠C=90°,∠A,∠B的平分線交于D點(diǎn),DE⊥BC于點(diǎn)E,DF⊥AC于點(diǎn)F.
(1)求證:四邊形CEDF為正方形;
(2)若AC=6,BC=8,求CE的長(zhǎng).
【答案】(1)見解析;(2)2
【解析】
(1)過點(diǎn)D作DN⊥AB于點(diǎn)N,先證明四邊形FCED是矩形,再由角平分線上的點(diǎn)到角兩邊的距離相等可知,DF=DE=DN,即可判定矩形FCED是正方形;
(2)根據(jù)勾股定理求出AB,△ABC可以拆分為△ACD,△BCD,△ABD三個(gè)小三角形,根據(jù)面積大三角形面積等于三個(gè)小三角形面積之和建立等量關(guān)系,可求出CE.
(1)證明:過點(diǎn)D作DN⊥AB于點(diǎn)N,
∵∠C=90°,DE⊥BC于點(diǎn)E,DF⊥AC于點(diǎn)F,
∴四邊形FCED是矩形,
又∵∠A,∠B的平分線交于D點(diǎn),
∴DF=DE=DN,
∴矩形FCED是正方形;
(2)解:∵AC=6,BC=8,∠C=90°,
∴AB=10,
∵四邊形CEDF為正方形,
∴DF=DE=DN,
∴,
則,
故EC==2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料閱讀:如圖①所示的圖形,像我們常見的學(xué)習(xí)用品—圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”.
解決問題:
(1)觀察“規(guī)形圖”,試探究與,,之間的數(shù)量關(guān)系,并說明理由;
(2)請(qǐng)你直接利用以上結(jié)論,解決以下兩個(gè)問題:
Ⅰ.如圖②,把一塊三角尺放置在上,使三角尺的兩條直角邊,恰好經(jīng)過點(diǎn),,若,則_____.
Ⅱ.如圖③,平分,平分,若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC中點(diǎn),F是AC中點(diǎn),AN是△ABC的外角∠MAC的角平分線,延長(zhǎng)DF交AN于點(diǎn)E,連接CE.
(1)求證:四邊形ADCE是矩形;
(2)填空:①若BC=AB=4,則四邊形ABDE的面積為 .
②當(dāng)△ABC滿足 時(shí),四邊形ADCE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)y=(x>0)的圖象交于點(diǎn)A(m,2),B(2,n).過點(diǎn)A作AC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,D是半圓O上一點(diǎn),連接OD,BD,∠ABD=30°,過A點(diǎn)作半圓O的切線交OD的延長(zhǎng)線于點(diǎn)G,點(diǎn)E是上的一個(gè)動(dòng)點(diǎn),連接AD、DE、BE.
(1)求證:△ADG≌△BOD;
(2)填空:
①當(dāng)∠DBE的度數(shù)為 時(shí),四邊形DOBE是菱形;
②連接OE,當(dāng)∠DBE的度數(shù)為 時(shí),OE⊥BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,是直角三角形,,點(diǎn)的坐標(biāo)分別為,
(1)求過點(diǎn)的直線的函數(shù)表達(dá)式
(2)在軸上找一點(diǎn),連接,使得與相似(不包括全等),并求點(diǎn)的坐標(biāo);
(3)在⑵的條件下,如分別是和上的動(dòng)點(diǎn),連接,設(shè),問是否存在這樣的使得與相似,如果存在,請(qǐng)求出的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《朗讀者》自播以來,以其厚重的文化底蘊(yùn)和感人的人文情懷,感動(dòng)了數(shù)以億計(jì)的觀眾,沭陽縣某中學(xué)開展“朗讀”比賽活動(dòng),九年級(jí)(1)、(2)班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)(滿分為100分)如圖所示。
⑴根據(jù)圖示填寫表格;
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九⑴班 | 85 | 85 | |
九⑵班 | 80 |
⑵如果規(guī)定成績(jī)較穩(wěn)定的班級(jí)勝出,你認(rèn)為哪個(gè)班級(jí)能勝出?說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為1,A,P,B,C是⊙O上的四個(gè)點(diǎn).∠APC=∠CPB=60°.
(1)判斷△ABC的形狀: ;
(2)試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當(dāng)點(diǎn)P位于的什么位置時(shí),四邊形APBC的面積最大?求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2cm/s的速度移動(dòng),點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1cm/s的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤6),那么:
(1)當(dāng)t為何值時(shí),△QAP是等腰直角三角形?
(2)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com