【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E,連接BD,CD.

(1)求證:BD=CD;

(2)請(qǐng)判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說(shuō)明理由.

【答案】(1)答案見解析;(2)B,E,C三點(diǎn)在以D為圓心,以DB為半徑的圓上.

【解析】試題分析: 利用等弧對(duì)等弦即可證明.
利用等弧所對(duì)的圓周角相等, 再等量代換得出 從而證明 所以三點(diǎn)在以為圓心,以為半徑的圓.

試題解析:

(1)證明:∵AD為直徑,ADBC,

∴由垂徑定理得:

∴根據(jù)圓心角、弧、弦之間的關(guān)系得:BD=CD.

(2)B,E,C三點(diǎn)在以D為圓心,以DB為半徑的圓上。

理由:由(1)知:

∴∠1=2,

又∵∠2=3,

∴∠1=3

∴∠DBE=3+4,DEB=1+5

BE是∠ABC的平分線,

∴∠4=5,

∴∠DBE=DEB,

DB=DE.

(1)知:BD=CD

DB=DE=DC.

B,E,C三點(diǎn)在以D為圓心,DB為半徑的圓上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知代數(shù)式x2y的值是5,則代數(shù)式﹣3x+6y+1的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ab=0,則點(diǎn)Pa,b)在(

A.坐標(biāo)軸上B.y軸上C.x軸上D.第一象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果多項(xiàng)式x2-mx+n能因式分解為(x+2)(x-3),則m+n的值______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC是等腰三角形,腰上的高為8cm,面積為40cm2,則該三角形的周長(zhǎng)是_______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市201910月底人口達(dá)到277.99萬(wàn)人,這個(gè)數(shù)據(jù)精確到(

A.百分位B.百位C.千位D.萬(wàn)位

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O 的半徑為1,直線CD 經(jīng)過(guò)圓心O,交⊙O C、D 兩點(diǎn),直徑AB⊥CD,點(diǎn) M 是直線CD 上異于點(diǎn)CO、D 的一個(gè)動(dòng)點(diǎn),AM 所在的直線交⊙O 于點(diǎn)N,點(diǎn) P 是直線CD 上另一點(diǎn),PMPN

(1)當(dāng)點(diǎn) M 在⊙O 內(nèi)部,如圖①,試判斷 PN 與⊙O 的關(guān)系,并寫出證明過(guò)程;

(2)當(dāng)點(diǎn) M 在⊙O 外部,如圖②,其他條件不變時(shí),(1)的結(jié)論是否還成立? 請(qǐng)說(shuō)明理由;

(3)當(dāng)點(diǎn) M 在⊙O 外部,如圖③,∠AMO15°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知直線 AB、CD 相交于點(diǎn) O,COE=90°

1)若∠AOC=36°,求∠BOE 的度數(shù);

2)若∠BODBOC=15,求∠AOE 的度數(shù).

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923292236627968/1924724835590144/STEM/dc8ee683cff64dfdb92368e07f9f9b9d.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線分別與x軸,y軸相交于A,B兩點(diǎn),0為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(4,0)

(1)k的值;

(2)過(guò)線段AB上一點(diǎn)P(不與端點(diǎn)重合)x軸,y軸的垂線,乖足分別為M,N.當(dāng)長(zhǎng)方形PMON的周長(zhǎng)是10時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案