【題目】經(jīng)過實(shí)驗(yàn)獲得兩個(gè)變量 x(x 0), y( y 0) 的一組對應(yīng)值如下表。

x

1

2

3

4

5

6

7

y

7

3.5

2.33

1.75

1.4

1.17

1

(1)在網(wǎng)格中建立平面直角坐標(biāo)系,畫出相應(yīng)的函數(shù)圖象,求出這個(gè)函數(shù)表達(dá)式;

(2)結(jié)合函數(shù)圖象解決問題:(結(jié)果保留一位小數(shù))

的值約為多少?

②點(diǎn)A坐標(biāo)為(6,0),點(diǎn)B在函數(shù)圖象上,OA=OB,則點(diǎn)B的橫坐標(biāo)約是多少?

【答案】(1)圖象如圖見解析,;(2) ,②B的橫坐標(biāo)約為:1.25.9

【解析】

(1)先描點(diǎn),再連線可畫出函數(shù)圖象;根據(jù)函數(shù)圖象可知,函數(shù)是反比例函數(shù),用待定系數(shù)法可求得解析式;(2)如圖,當(dāng)x=y時(shí),x=y=;以O(shè)為圓心,6為半徑作弧,與函數(shù)圖象的交點(diǎn)就是B.

解:(1)圖象如圖所示,

設(shè)函數(shù)關(guān)系式為

(2)①如圖

②如圖B的橫坐標(biāo)約為:1.25.9

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等邊ABC中,點(diǎn)D.E分別在邊BCAB上,且BD=AE,ADCE交于點(diǎn)F

1)求證:AD=CE

2)求∠DFC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年我市體育中考總分60分,其中男生1000米跑為必選項(xiàng)目,再在立定跳遠(yuǎn)、跳繩、實(shí)心球擲遠(yuǎn)、籃球運(yùn)球和足球運(yùn)球中選擇兩項(xiàng);女生800米跑為必選項(xiàng)目,再在立定跳遠(yuǎn)、跳繩、仰臥起坐、籃球運(yùn)球和足球運(yùn)球中選擇兩項(xiàng)某校對得分超過40分的20位學(xué)生的成績m進(jìn)行統(tǒng)計(jì),結(jié)果如頻數(shù)分布表所示:

a的值;

若用扇形圖來描述,求分?jǐn)?shù)在內(nèi)所對應(yīng)的扇形圖的圓心角的大小;

若男生小明在剛開始訓(xùn)練時(shí)在選考項(xiàng)目隨機(jī)選擇兩項(xiàng)進(jìn)行訓(xùn)練,試用列舉法求小明選擇跳繩籃球運(yùn)球的概率提示:可以用字母表示各個(gè)項(xiàng)目

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形, 點(diǎn)GBC上任意一點(diǎn),DE⊥AG于點(diǎn)EBF⊥AG于點(diǎn)F.

(1) 求證:DEBF = EF

(2) 當(dāng)點(diǎn)GBC邊中點(diǎn)時(shí), 試探究線段EFGF之間的數(shù)量關(guān)系, 并說明理由.

(3) 若點(diǎn)GCB延長線上一點(diǎn),其余條件不變.請畫出圖形,寫出此時(shí)DE、BF、EF之間的數(shù)量關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.

下面有三個(gè)推斷:

①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實(shí)驗(yàn)次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)釘尖向上的概率是0.618;

③若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EBEC,DB添加一個(gè)條件不能使四邊形DBCE成為矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=CFD=90°,AE=CF=5,BE=DF=12,則EF的長是( )

A. 7 B. 8 C. 7 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,,,,則線段CD的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的頂點(diǎn)A,Bx軸上,點(diǎn)A在點(diǎn)B的左側(cè)點(diǎn)Dy軸的正半軸上,BAD=60°,點(diǎn)A的坐標(biāo)為(-2,0).

(1)求線段AD所在直線的表達(dá)式;

(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度,按照A→D→C→B→A的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為tt為何值時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對角線AC相切?

查看答案和解析>>

同步練習(xí)冊答案