【題目】如果關(guān)于x的方程x2+mx+250有兩個(gè)相等的實(shí)數(shù)根,那么m的值為_____

【答案】±10

【解析】

根據(jù)根的判別式即可求出答案.

由題意可知:m24×250

m±10

故答案為:±10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(a≠0)經(jīng)過(guò)A(-1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)點(diǎn)P在拋物線的對(duì)稱軸上,當(dāng)△ACP的周長(zhǎng)最小時(shí),求出點(diǎn)P的坐標(biāo);

(3) 點(diǎn)N在拋物線上,點(diǎn)M在拋物線的對(duì)稱軸上,是否存在以點(diǎn)N為直角頂點(diǎn)的RtDNMRt△BOC相似,若存在,請(qǐng)求出所有符合條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠C=90°若BC=2,則AB=4,則∠B____________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,O為AC中點(diǎn),過(guò)點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BF交AC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,F(xiàn)O=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個(gè)數(shù)是(

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)證明:“三角形內(nèi)角和是180°”;
(2)請(qǐng)寫出“直角三角形斜邊上的中線等于斜邊的一半”的逆命題,判斷這一逆命題是真命題還是假命題,如果是真命題給出證明,如果是假命題,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,G,E分別是正方形ABCD的邊AB,BC的點(diǎn),且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH

其中,正確的結(jié)論有(

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,且AC⊥BD,點(diǎn)E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),依次連接各邊中點(diǎn)得到四邊形EFGH,求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在求1+3+32+33+34+35+36+37+38的值時(shí),張紅發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38①,
然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,
②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,
所以S=
得出答案后,愛(ài)動(dòng)腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD和四邊形DEFG為正方形,點(diǎn)E在線段DE上,點(diǎn)A,D,G在同一直線上,且AD=3,DE=1,連接AC,CG,AE,并延長(zhǎng)AE交CG于點(diǎn)H.

(1)求sinEAC的值.

(2)求線段AH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案