【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:

根據以上信息,整理分析數(shù)據如下:

平均成績/環(huán)

中位數(shù)/環(huán)

眾數(shù)/環(huán)

方差

7

7

1.2

7

8

4.2

1)寫出表格中,的值;

2)從方差的角度看,若選派其中一名參賽,你認為應選哪名隊員?并說明理.

【答案】177.5;(2)甲,理由略.

【解析】

1)利用加權平均數(shù)的計算公式、中位數(shù)的概念解答即可;
2)根據方差的性質判斷即可.

解:∵甲隊員的射擊成績?yōu)椋?,6,6,7,7,7,7,8,8,9,

∴甲隊員的射擊成績平均數(shù)為:a=(5+6×2+7×4+8×2+9)÷10=7

∵乙隊員的射擊成績?yōu)椋?/span>3,648,7,87,8,10,9,從小數(shù)到大數(shù)依次排列為:346,7,78,8,89,10,

∴乙隊員射擊成績的中位數(shù)為:b=7.5
a=7, b=7.5
2)從方差的角度看,選派甲隊員去參賽,理由是:

從表中可知:S2=1.2,S2=4.2

S2S2

∴甲隊員的射擊成績較穩(wěn)定,

∴選甲隊員去參賽

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知⊙A經過點E,B,C,O,且C(0,6)、E(﹣8,0)、O(0,0),則cos∠OBC的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題:計算和分解因式
(1)計算: ﹣|﹣4|+2cos60°﹣(﹣ 1
(2)因式分解:(x﹣y)(x﹣4y)+xy.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市荸薺喜獲豐收,某生產基地收獲荸薺40噸.經市場調查,可采用批發(fā)、零售、加工銷售三種銷售方式,這三種銷售方式每噸荸薺的利潤如下表:

銷售方式 批發(fā) 零售 加工銷售

利潤(百元/噸) 12 22 30

設按計劃全部售出后的總利潤為y百元,其中批發(fā)量為x噸,且加工銷售量為15噸.

1)求yx之間的函數(shù)關系式;

2)若零售量不超過批發(fā)量的4倍,求該生產基地按計劃全部售完荸薺后獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在暑期社會實踐活動中,以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數(shù)之間的關系如圖所示.請你根據圖象提供的信息完成以下問題:

(1)求降價前銷售金額y()與售出西瓜x(千克)之間的函數(shù)關系式.

(2)小明從批發(fā)市場共購進多少千克西瓜?

(3)小明這次賣瓜賺了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CAB=40°,連接BD,OD,則∠AOD+∠ABD的度數(shù)為( )

A.100°
B.110°
C.120°
D.150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸,軸分別交于,兩點,且經過點

1)求的值;

2)若,

①求的值;

②點軸上一動點,點為坐標平面內另一點,若以,,為頂點的四邊形是菱形,請直接寫出所有符合條件的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南山植物園中現(xiàn)有A、B兩個園區(qū),已知A園區(qū)為長方形,長為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長為(x+3y)米.

(1)請用代數(shù)式表示A、B兩園區(qū)的面積之和并化簡;

(2)現(xiàn)根據實際需要對A園區(qū)進行整改,長增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長比寬多350米,且整改后兩園區(qū)的周長之和為980米.

①求x、y的值;

②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費用與吸引游客的收益如表:

求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形△ABC的腰長AB=AC=25,BC=40,動點P從B出發(fā)沿BC向C運動,速度為10單位/秒.動點Q從C出發(fā)沿CA向A運動,速度為5單位/秒,當一個點到達終點的時候兩個點同時停止運動,點P′是點P關于直線AC的對稱點,連接P′P和P′Q,設運動時間為t秒.

(1)若當t的值為m時,PP′恰好經過點A,求m的值.
(2)設△P′PQ的面積為y,求y與t之間的函數(shù)關系式(m<t≤4)
(3)是否存在某一時刻t,使PQ平分角∠P′PC?存在,求相應的t值,不存在,請說明理由.

查看答案和解析>>

同步練習冊答案