【題目】(1)問題發(fā)現(xiàn):如圖 1,已知點(diǎn) F,G 分別在直線 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,則∠GEF 的度數(shù)為 ;
(2)拓展探究:∠GEF,∠BFE,∠CGE 之間有怎樣的數(shù)量關(guān)系?寫出結(jié)論并給出證明; 答:∠GEF= .
證明:過點(diǎn) E 作 EH∥AB,
∴∠FEH=∠BFE( ),
∵AB∥CD,EH∥AB,(輔助線的作法)
∴EH∥CD( ),
∴∠HEG=180°-∠CGE( ),
∴∠FEG=∠HFG+∠FEH= .
(3)深入探究:如圖 2,∠BFE 的平分線 FQ 所在直線與∠CGE 的平分線相交于點(diǎn) P,試探究∠GPQ 與∠GEF 之間的數(shù)量關(guān)系,請直接寫出你的結(jié)論.
【答案】(1)90°(2)∠BFE+180°∠CGE;兩直線平行,內(nèi)錯(cuò)角相等;平行線的遷移性;兩直線平行,同旁內(nèi)角互補(bǔ);∠BFE+180°∠CGE(3)∠GPQ+∠GEF=90°
【解析】
(1)如圖1,過E作EH∥AB,根據(jù)平行線的性質(zhì)可得∠HEF=∠BFE=40,∠HEG=50,相加可得結(jié)論;
(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,則∠HEG=180°∠CGE,兩式相加可得∠GEF=∠BFE+180°∠CGE;
(3)如圖2,根據(jù)角平分線的定義得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性質(zhì)得:∠GPQ=∠GMF∠PFM=∠CGP∠BFQ,計(jì)算∠GPQ+∠GEF并結(jié)合②的結(jié)論可得結(jié)果.
(1)如圖1,過E作EH∥AB,
∵AB∥CD,
∴AB∥CD∥EH,
∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,
∵∠CGE=130°,
∴∠HEG=50°,
∴∠GEF=∠HEF+∠HEG=40°+50°=90°;
故答案為:90°;
(2)∠GEF=∠BFE+180°∠CGE,
證明:過點(diǎn) E 作 EH∥AB,
∴∠FEH=∠BFE(兩直線平行,內(nèi)錯(cuò)角相等),
∵AB∥CD,EH∥AB,(輔助線的作法)
∴EH∥CD(平行線的遷移性),
∴∠HEG=180°-∠CGE(兩直線平行,同旁內(nèi)角互補(bǔ)),
∴∠FEG=∠HFG+∠FEH=∠BFE+180°∠CGE,
故答案為:∠BFE+180°∠CGE;兩直線平行,內(nèi)錯(cuò)角相等;平行線的遷移性;兩直線平行,同旁內(nèi)角互補(bǔ);∠BFE+180°∠CGE;
(3)∠GPQ+∠GEF=90°,
理由是:如圖2,∵FQ平分∠BFE,GP平分∠CGE,
∴∠BFQ=∠BFE,∠CGP=∠CGE,
在△PMF中,∠GPQ=∠GMF∠PFM=∠CGP∠BFQ,
∴∠GPQ+∠GEF=∠CGE∠BFE+∠GEF=×180°=90°.
即∠GPQ+∠GEF=90°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的棋子按一定的規(guī)律組成,其中第①個(gè)圖形有1顆棋子,第②個(gè)圖形一共有6顆棋子,第③個(gè)圖形一共有16顆棋子,……,則第⑩個(gè)圖形中棋子的顆數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)P是直角三角形ABC斜邊AB上一點(diǎn)(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F,Q為斜邊AB的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系是 ,QE與QF的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),若AC=BC,CE:AE=1:3,△FBQ的面積等于3,求△AQE的面積;
(3)如圖3,當(dāng)點(diǎn)P在線段BA的延長線上時(shí),請畫出符合條件的圖形.若AC=BC,AE:CE=1:3,△FEQ的面積等于3,求△AQE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB邊的垂直平分線l1交BC于D,AC邊的垂直平分線l2交BC于E,l1與l2相交于點(diǎn)O.△ADE的周長為6cm.
(1)求BC的長;
(2)分別連結(jié)OA、OB、OC,若△OBC的周長為16cm,求OA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B>∠C,AD⊥BC,垂足為D,AE平分∠BAC.已知∠B=65°,∠DAE=20°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在圓⊙O內(nèi)有折線OABC,其中OA=8,AB=12,∠A=∠B=60°,則BC的長為( 。
A. 19 B. 16 C. 18 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知∠BAC=∠EAD=90o.
(1)判斷∠BAE與∠CAD的大小關(guān)系,并說明理由.
(2)當(dāng)∠EAC=60o時(shí),求∠BAD的大小.
(3)探究∠EAC與∠BAD的數(shù)量關(guān)系,請直接寫出結(jié)果,不要求說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論正確的是 .(寫出所有正確結(jié)論的序號)
①b>0
②a﹣b+c<0
③陰影部分的面積為4
④若c=﹣1,則b2=4a.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com