【題目】如圖,銳角三角形ABC中(AB>AC),AH⊥BC,垂足為H,E、D、F分別是各邊的中點,則四邊形EDHF是( )
A.梯形
B.等腰梯形
C.直角梯形
D.矩形
【答案】B
【解析】解:∵E、D、F分別是各邊的中點.∴ED∥AC,ED= AC=FC,EF∥BC,EF= BC=DC.
∴四邊形EFCD是平行四邊形.
∴DE=CF.
∵AH⊥BC,垂足為H,F(xiàn)是AC的中點.
∴HF= AC=CF.
∴HF=DE.
∵DH∥EF.
∴四邊形EDHF是等腰梯形.
故選B.
【考點精析】掌握三角形中位線定理和等腰梯形的判定是解答本題的根本,需要知道連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形OABC中,O為直角坐標系的原點,A、B、C的坐標分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當這兩點中有一點到達自己的終點時,另一點也停止運動.設(shè)P從出發(fā)起運動了t秒.
(1)如果點Q的速度為每秒2個單位,①試分別寫出這時點Q在OC上或在CB上時的坐標(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
②求t為何值時,PQ∥OC?
(2)如果點P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時點Q所經(jīng)過的路程和它的速度;
②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標;如不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展以感恩教育為主題的藝術(shù)活動,舉辦了四個項目的比賽,它們分別是演講、唱歌、書法、繪畫.要求每位同學(xué)必須參加,且限報一項活動.以九年級(1)班為樣本進行統(tǒng)計,并將統(tǒng)計結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計圖.請你結(jié)合圖示所給出的信息解答下列問題.
(1)求出參加繪畫比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比?
(2)求出扇形統(tǒng)計圖中參加書法比賽的學(xué)生所在扇形圓心角的度數(shù)?
(3)若該校九年級學(xué)生有600人,請你估計這次藝術(shù)活動中,參加演講和唱歌的學(xué)生各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個正方形和兩個等邊三角形的位置如圖所示,若∠3=50°,則∠1+∠2=( )
A.90°
B.100°
C.130°
D.180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生對乒乓球、羽毛球、排球、籃球和足球五種球類運動項目的喜愛情況(每位同學(xué)必須且只能從中選擇一項),隨機選取了若干名學(xué)生進行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成了不完整的統(tǒng)計圖.
(1)參加調(diào)查的學(xué)生一共有名,圖2中乒乓球所在扇形的圓心角為°;
(2)在圖1中補全條形統(tǒng)計圖(標上相應(yīng)數(shù)據(jù));
(3)若該校共有2000名同學(xué),請根據(jù)抽樣調(diào)查數(shù)據(jù)估計該校同學(xué)中喜歡足球運動的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com