【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲間距離的最大值為( )
A.5 B.6 C.7 D.10
【答案】C
【解析】
試題分析:已知4條木棍的四邊長為2、3、4、6;
①選2+3、4、6作為三角形,則三邊長為5、4、6;5﹣4<6<5+4,能構(gòu)成三角形,此時兩個螺絲間的最長距離為6;
②選3+4、6、2作為三角形,則三邊長為2、7、6;6﹣2<7<6+2,能構(gòu)成三角形,此時兩個螺絲間的最大距離為7;
③選4+6、2、3作為三角形,則三邊長為10、2、3;2+3<10,不能構(gòu)成三角形,此種情況不成立;
④選6+2、3、4作為三角形,則三邊長為8、3、4;而3+4<8,不能構(gòu)成三角形,此種情況不成立;
綜上所述,任兩螺絲的距離之最大值為7.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,B F⊥AC,若AB=CD.
(1)圖①中有 對全等三角形,并把它們寫出來.
(2)求證:G是BD的中點(diǎn).
(3)若將△ABF的邊AF沿GA方向移動變?yōu)閳D②時,其余條件不變,第(2)題中的結(jié)論是否成立?如果成立,請予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若點(diǎn)P坐標(biāo)為(2,-3),則它位于第幾象限
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多邊形的內(nèi)角和等于1440°,求:
(1)這個多邊形的邊數(shù);
(2)過一個頂點(diǎn)有_______條對角線。
(3)總對角線有_________條。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠A=∠C=90°,BE、DF分別是∠ABC、∠ADC的平分線.求證:
(1)∠1+∠2=90°;
(2)BE∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種新運(yùn)算“⊕”,其運(yùn)算規(guī)則為:a⊕b=﹣2a+3b,如:1⊕5=(﹣2)×1+3×5=13,則方程x⊕2=0的解為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)課上,老師在黑板上畫了如圖圖形,并寫下了四個等式:
①BD=CA,②AB=DC,③∠B=∠C,④∠BAE=∠CDE.
要求同學(xué)從這四個等式中選出兩個作為條件,推出AE=DE.請你試著完成老師提出的要求,并說明理由.(寫出一種即可)
已知:____(請?zhí)顚懶蛱枺,求證:AE=DE.
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種出租車的收費(fèi)標(biāo)準(zhǔn)是:起步價7元(即行駛距離不超過3km都需付7元車費(fèi));超過3km以后,每增加1km,加收2.4元(不足1km按1km計),某人乘出租車從甲地到乙地共支付車費(fèi)19元,則此人從甲地到乙地經(jīng)過的路程( ).
A. 正好8km B. 最多8km
C. 至少8km D. 正好7km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E.
(1)求證: DE=AD+BE.
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時,DE、AD、BE又怎樣的關(guān)系?請直接寫出你的結(jié)論,不必說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com