已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉,它的兩邊分別交CB,DC(或它們的延長線)于點M,N.當∠MAN繞點A旋轉到BM=DN時(如圖1),易證BM+DN=MN.
(1)當∠MAN繞點A旋轉到BM≠DN時(如圖2),線段BM,DN和MN之間有怎樣的數(shù)量關系?寫出猜想,并加以證明.
(2)當∠MAN繞點A旋轉到如圖3的位置時,線段BM,DN和MN之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.
(1)BM+DN=MN成立.(2)DN-BM=MN.
【解析】
試題分析:解:(1)BM+DN=MN成立.
如下圖,在MB的延長線上,截得BE=DN,連接AE
易證:△ABE≌△ADN
∴AE=AN.
∴∠EAB=∠NMD.
∴∠BAD=90°,∠NAM=45°
∴∠BAM+∠NMD=45°.
∴∠EAB+∠BAM=45°.
∴∠EAM=∠NAM
又AM為公共邊,
∴△AEM≌△ANM
∴ME=MN.
∴ME=BE+BM=DN+BM.
∴DN+BM=MN.
(2)
DN-BM=MN.
理由如下:
如圖,在DC上截取DF=BM,連接AF.
∵AB=AD,∠ABM=∠ADF=90°,
∴△ABM≌△ADF (SAS)
∴AM=AF,∠MAB=∠FAD.
∴∠MAB+∠BAF=∠FAD+∠BAF=90°,
即∠MAF=∠BAD=90°.
又∠MAN=45°,
∴∠NAF=∠MAN=45°.
∵AN=AN,
∴△MAN≌△FAN.
∴MN=FN,
即 MN=DN-DF=DN-BM;
考點:正方形的性質、全等三角形的判定和性質等
點評:本題難度驕傲大,主要考查正方形的性質、全等三角形的判定和性質、勾股定理等知識點,運用截長補短法構造全等三角形是關鍵.也可運用圖形的旋轉性質構造全等三角形.
科目:初中數(shù)學 來源: 題型:
A、 | B、 | C、 | D、 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
6 |
3 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com