【題目】如圖,正方形ABCD的邊長是3,延長AB至點P、延長BC至點Q,使BP=CQ,連接AQ,DP交于點O,相Q交CD于點F,DP交BC于點E,連接AE.
(1)求證:AQ⊥DP;
(2)求證:S△AOD=S四邊形OECF;
(3)當BP=1時,請直接寫出OE:OA的值.
【答案】(1)見解析;(2)見解析;(3).
【解析】
(1)由四邊形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根據(jù)全等三角形的性質得到∠P=∠Q,根據(jù)余角的性質得到AQ⊥DP;
(2)證明△CQF≌△BPE,根據(jù)全等三角形的性質得到CF=BE,DF=CE,于是得到S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF;
(3)證明△PBE∽△PAD,根據(jù)相似三角形的性質得到BE=,求出QE=,OQ=,OE=,即可求出OE:OA的值.
(1)證明:∵四邊形ABCD是正方形,
∴AD=BC,∠DAB=∠ABC=90°,
∵BP=CQ,
∴AP=BQ,
在△DAP與△ABQ中,
,
∴△DAP≌△ABQ(SAS),
∴∠P=∠Q,
∵∠Q+∠QAB=90°,
∴∠P+∠QAB=90°,
∴∠AOP=90°,
∴AQ⊥DP;
(2)證明:在△CQF與△BPE中,
,
∴△CQF≌△BPE(ASA),
∴CF=BE,
∴DF=CE,
在△ADF與△DCE中,
,
∴△ADF≌△DCE(SAS),
∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,
∴S△AOD=S四邊形OECF;
(3)解:∵BP=1,AB=3,
∴PA=4,
∵△PBE∽△PAD,
∴,
∴,
∴QE=CQ+BC﹣CE=1+3﹣,
∵AD∥QE,
∴△QOE∽△PAD,
∴,
∴OQ=,OE=,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的函數(shù)關系圖象,其中M為曲線部分的最低點下列說法錯誤的是( 。
A. △ABC是等腰三角形B. AC邊上的高為4
C. △ABC的周長為16D. △ABC的面積為10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(a,b)是雙曲線y=(x>0)上的一點,點P是x軸負半軸上的一動點,AC⊥y軸于C點,過A作AD⊥x軸于D點,連接AP交y軸于B點.
(1)△PAC的面積是 ;
(2)當a=2,P點的坐標為(﹣2,0)時,求△ACB的面積;
(3)當a=2,P點的坐標為(x,0)時,設△ACB的面積為S,試求S與x之間的函數(shù)關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】豆豆媽媽用小米運動手環(huán)記錄每天的運動情況,下面是她6天的數(shù)據(jù)記錄(不完整):
(1)4月5日,4月6日,豆豆媽媽沒來得及作記錄,只有手機圖片,請你根據(jù)圖片數(shù)據(jù),幫她補全表格.
(2)豆豆利用自己學習的統(tǒng)計知識,把媽媽步行距離與燃燒脂肪情況用如下統(tǒng)計圖表示出來,請你根據(jù)圖中提供的信息寫出結論: .(寫一條即可)
(3)豆豆還幫媽媽分析出步行距離和卡路里消耗數(shù)近似成正比例關系,豆豆媽媽想使自己的卡路里消耗數(shù)達到250千卡,預估她一天步行距離為 公里.(直接寫出結果,精確到個位)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經過點M,N.
(1)求反比例函數(shù)的解析式;
(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】初三上學期期末考試后,數(shù)學老師將九年級(1)班的數(shù)學成績制成如圖所示的統(tǒng)計圖(滿分150分,每組含最低分,不含最高分),并給出如下信息:①第二組頻率是0.15;②第二、四組的頻率和是0.4;③自左至右第三,四,五,六,七組的頻數(shù)比9:10:7:3:3.請你結合統(tǒng)計圖解答下列問題:
(1)九年級(1)班學生共有____人;
(2)求九年級(1)班在110~120分數(shù)段的人數(shù);
(3)如果成績不少于120分為優(yōu)秀,那么全年級800人中成績達到優(yōu)秀的大約多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【問題情境】
已知矩形的面積為a(a為常數(shù),a>0),當該矩形的長為多少時,它的周長最小?最小值是多少?
【數(shù)學模型】
設該矩形的長為x,周長為y,則y與x的函數(shù)表達式為y=2(x+ )(x>0).
【探索研究】
小彬借鑒以前研究函數(shù)的經驗,先探索函數(shù)y=x+的圖象性質.
(1)結合問題情境,函數(shù)y=x+ 的自變量x的取值范圍是x>0,下表是y與x的幾組對應值.
① 寫出m的值;
②畫出該函數(shù)圖象,結合圖象,得出當x=________時,y有最小值,y最小=________;
提示:在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(小)值時,除了通過觀察圖象,還可以通過配方得到.試用配方法求函數(shù)y=x+ (x>0)的最小值,解決問題(2).
(2)【解決問題】
直接寫出“問題情境”中問題的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊三角形ABC中,E為直線AB上一點,連接EC.ED與直線BC交于點D,ED=EC.
(1)如圖1,AB=1,點E是AB的中點,求BD的長;
(2)點E是AB邊上任意一點(不與AB邊的中點和端點重合),依題意,將圖2補全,判斷AE與BD間的數(shù)量關系并證明;
(3)點E不在線段AB上,請在圖3中畫出符合條件的一個圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,點D是邊AB上的動點,將△ACD沿CD所在的直線折疊至△CDA的位置,CA'交AB于點E.若△A'ED為直角三角形,則AD的長為______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com