53、如圖所示,在以O(shè)為圓心的兩個(gè)同心圓中,大圓的弦AB和CD相等,且AB與小圓相切于點(diǎn)E,求證:CD與小圓相切.
分析:要證CD是小圓的切線(xiàn),過(guò)O作OF⊥CD于F,AB與小⊙O切于點(diǎn)E,根據(jù)同圓等弦的弦心距相等可知OE=OF.
解答:證明:如右圖所示,連接OE,過(guò)O作OF⊥CD于F.
∵AB與小⊙O切于點(diǎn)E,
∴OE⊥AB,
∵AB=CD,
∴OE=OF(同圓等弦的弦心距相等),
∴CD與小⊙O相切.
點(diǎn)評(píng):本題考查了切線(xiàn)的判定:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn);解決問(wèn)題的關(guān)鍵是同圓等弦的弦心距相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑為1,AB與小圓相切于點(diǎn)A,與大圓相交于點(diǎn)B,大圓的精英家教網(wǎng)弦BC⊥AB于點(diǎn)B,過(guò)點(diǎn)C作大圓的切線(xiàn)CD交AB的延長(zhǎng)線(xiàn)于點(diǎn)D,連接OC交小圓于點(diǎn)E,連接BE、BO.
(1)求證:△AOB∽△BDC;
(2)設(shè)大圓的半徑為x,CD的長(zhǎng)為y:
①求y與x之間的函數(shù)關(guān)系式;
②當(dāng)BE與小圓相切時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在以O(shè)為圓心的兩個(gè)同心圓中,大圓的弦AB和CD相等,且AB與小圓相切于點(diǎn)E,則CD與小圓
相切
相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(11·貴港)(本題滿(mǎn)分11分)

如圖所示,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑為1,AB與小圓相切于點(diǎn)A,與大圓相交于點(diǎn)B,大圓的弦BC⊥AB于點(diǎn)B,過(guò)點(diǎn)C作大圓的切線(xiàn)CD交AB的延長(zhǎng)線(xiàn)于點(diǎn)D,連接OC交小圓于點(diǎn)E,連接BE、BO.

(1)求證:△AOB∽△BDC;

(2)設(shè)大圓的半徑為x,CD的長(zhǎng)為y:

① 求y與x之間的函數(shù)關(guān)系式;

② 當(dāng)BE與小圓相切時(shí),求x的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷 題型:解答題

(11·貴港)(本題滿(mǎn)分11分)
如圖所示,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑為1,AB與小圓相切于點(diǎn)A,與大圓相交于點(diǎn)B,大圓的弦BC⊥AB于點(diǎn)B,過(guò)點(diǎn)C作大圓的切線(xiàn)CD交AB的延長(zhǎng)線(xiàn)于點(diǎn)D,連接OC交小圓于點(diǎn)E,連接BE、BO.

(1)求證:△AOB∽△BDC;
(2)設(shè)大圓的半徑為x,CD的長(zhǎng)為y:
①求y與x之間的函數(shù)關(guān)系式;
②當(dāng)BE與小圓相切時(shí),求x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案