已知:在矩形中,,.分別以所在直線為軸和軸,建立如圖所示的平面直角坐標(biāo)系.是邊上的一個(gè)動(dòng)點(diǎn)(不與重合),過(guò)點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn)

(1)求證:的面積相等;

(2)記,求當(dāng)為何值時(shí),有最大值,最大值為多少?

(3)請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn),使得將沿對(duì)折后,點(diǎn)恰好落在上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(1)證明:設(shè),的面積分別為,,

由題意得,

,

,即的面積相等.-------------------2分

(2)由題意知:兩點(diǎn)坐標(biāo)分別為,,

,

當(dāng)時(shí),有最大值.

.---------------5分

(3)解:設(shè)存在這樣的點(diǎn),將沿對(duì)折后,點(diǎn)恰好落在邊上的點(diǎn),過(guò)點(diǎn),垂足為

由題意得:,,,

,

,

,,解得

存在符合條件的點(diǎn),它的坐標(biāo)為.-----------------8分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(8分) 已知:在矩形中,.分別以所在直線為軸和軸,建立如圖所示的平面直角坐標(biāo)系.是邊上的一個(gè)動(dòng)點(diǎn)(不與重合),過(guò)點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn)

1.(1)求證:的面積相等;

2.(2)記,求當(dāng)為何值時(shí),有最大值,最大值為多少?

3.(3)請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn),使得將沿對(duì)折后,點(diǎn)恰好落在上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(8分)已知:在矩形中,,.分別以所在直線為軸和軸,建立如圖所示的平面直角坐標(biāo)系.是邊上的一個(gè)動(dòng)點(diǎn)(不與重合),過(guò)點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn)

【小題1】(1)求證:的面積相等;
【小題2】(2)記,求當(dāng)為何值時(shí),有最大值,最大值為多少?
【小題3】(3)請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn),使得將沿對(duì)折后,點(diǎn)恰好落在上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江省桐鄉(xiāng)市河山鎮(zhèn)中學(xué)學(xué)校九年級(jí)第一學(xué)期期末調(diào)研測(cè)試數(shù)學(xué)卷 題型:解答題

(8分)已知:在矩形中,,.分別以所在直線為軸和軸,建立如圖所示的平面直角坐標(biāo)系.是邊上的一個(gè)動(dòng)點(diǎn)(不與重合),過(guò)點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn)

【小題1】(1)求證:的面積相等;
【小題2】(2)記,求當(dāng)為何值時(shí),有最大值,最大值為多少?
【小題3】(3)請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn),使得將沿對(duì)折后,點(diǎn)恰好落在上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市學(xué)校九年級(jí)第一學(xué)期期末調(diào)研測(cè)試數(shù)學(xué)卷 題型:解答題

(8分) 已知:在矩形中,.分別以所在直線為軸和軸,建立如圖所示的平面直角坐標(biāo)系.是邊上的一個(gè)動(dòng)點(diǎn)(不與重合),過(guò)點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn)

1.(1)求證:的面積相等;

2.(2)記,求當(dāng)為何值時(shí),有最大值,最大值為多少?

3.(3)請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn),使得將沿對(duì)折后,點(diǎn)恰好落在上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在矩形中,,.分別以所在直線為軸和軸,建立如圖所示的平面直角坐標(biāo)系.是邊上的一個(gè)動(dòng)點(diǎn)(不與重合),過(guò)點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn)

(1)求證:的面積相等;

(2)記,求當(dāng)為何值時(shí),有最大值,最大值為多少?

(3)請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn),使得將沿對(duì)折后,點(diǎn)恰好落在上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案