17、在直角坐標(biāo)平面內(nèi),二次函數(shù)的圖象頂點為A(1,-4),且過點B(3,0),求該二次函數(shù)的解析式.
分析:直接設(shè)為頂點式,再把點B(3,0)代入得a=1,從而求得解析式.
解答:解:設(shè)y=a(x-1)2-4,
用B(3,0)代入得a=1.
故y=(x-1)2-4或y=x2-2x-3.
點評:考查當(dāng)題給條件為已知圖象的頂點坐標(biāo)或?qū)ΨQ軸或極大(小)值時,可設(shè)解析式為頂點式:y=a(x-h)2+k(a≠0求解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點為A(1,-4),且過點B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點為P(1,-4),且過點B(3,0)
(1)求該二次函數(shù)的解析式;
(2)若該二次函數(shù)圖象與x軸的兩個交點分別為A、B(A在B的左邊),求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),二次函數(shù)y=ax2+bx-3(a≠0)圖象的頂點為A(1,-4).
(1)求該二次函數(shù)關(guān)系式;
(2)將該二次函數(shù)圖象向上平移幾個單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點為A(1,-4)且經(jīng)過點B(3,0).
(1)求該二次函數(shù)的解析式.
(2)求直線y=-x-1與該二次函數(shù)圖象的交點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案