關(guān)于x的方程kx2+(k-2)x+=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)設(shè)方程的兩根分別為x1,x2,若|x1+x2|-1=x1x2,求k的值.
【答案】分析:(1)由關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根,得到根的判別式大于0,且k不為0,列出關(guān)于k的不等式,求出不等式的解集即可得到k的范圍;
(2)利用根與系數(shù)的關(guān)系表示出兩根之和與兩根之積,代入已知的等式中,得到關(guān)于k的方程,求出方程的解得到k的值,將求出的k值代入k的范圍進(jìn)行檢驗(yàn),即可得到滿足題意的k的值.
解答:解:(1)由題意可得:,
整理得:-4k+4>0,且k≠0,
解得:k<1,
則k的范圍是k<1且k≠0;
(2)由題意可得:,
∵|x1+x2|-1=x1x2
∴||-1=,即||=,
==-,
解得:k=或k=-8,
經(jīng)檢驗(yàn)k=,k=-8滿足題意,
則k的值是或-8.
點(diǎn)評(píng):此題考查了根與系數(shù)的關(guān)系,及根的判別式與方程解的情況,一元二次方程ax2+bx+c=0(a≠0),當(dāng)b2-4ac>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)b2-4ac<0時(shí),方程無解;當(dāng)b2-4ac=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,且方程有解時(shí),設(shè)方程的解分別為x1,x2,則有x1+x2=-,x1x2=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程kx2+(k+1)x+
k
4
=0
有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是( 。
A、k>-1且k≠0
B、k<
1
2
C、k>-
1
2
且k≠0
D、k<1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程kx2-8x+5=0有實(shí)數(shù)根,則k的取值范圍是( 。
A、k≤
64
5
B、k≥-
16
5
C、k≥
16
5
D、k≤
16
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程kx2+2(k+1)x-3=0
(1)若方程有兩個(gè)有理數(shù)根,求整數(shù)k的值
(2)若k滿足不等式16k+3>0,試討論方程根的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果關(guān)于x的方程kx2-6x+9=0有兩個(gè)不相等的實(shí)數(shù)根,那么k的取值范圍是
k≤1且k≠0
k≤1且k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果關(guān)于x的方程kx2+3x+2=0有兩個(gè)實(shí)數(shù)根,則k取值范圍為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案