【題目】如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB′F.設(shè)點E、F、G運動的時間為t(單位:s).

(1)當t=s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.

【答案】
(1)2.5
(2)

解:分兩種情況,討論如下:

①若△EBF∽△FCG,

則有 ,即 ,

解得:t=2.8;

②若△EBF∽△GCF,

則有 ,即 ,

解得:t=﹣14﹣2 (不合題意,舍去)或t=﹣14+2

∴當t=2.8s或t=(﹣14+2 )s時,以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似


(3)

解:假設(shè)存在實數(shù)t,使得點B′與點O重合.

如圖,過點O作OM⊥BC于點M,則在Rt△OFM中,OF=BF=3t,F(xiàn)M= BC﹣BF=6﹣3t,OM=5,

由勾股定理得:OM2+FM2=OF2

即:52+(6﹣3t)2=(3t)2

解得:t= ;

過點O作ON⊥AB于點N,則在Rt△OEN中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,

由勾股定理得:ON2+EN2=OE2

即:62+(5﹣t)2=(10﹣t)2

解得:t=3.9.

≠3.9,

∴不存在實數(shù)t,使得點B′與點O重合


【解析】解:(1)若四邊形EBFB′為正方形,則BE=BF,BE=10﹣t,BF=3t,
即:10﹣t=3t,
解得t=2.5;
(1)利用正方形的性質(zhì),得到BE=BF,列一元一次方程求解即可;(2)△EBF與△FCG相似,分兩種情況,需要分類討論,逐一分析計算;(3)本問為存在型問題.假設(shè)存在,則可以分別求出在不同條件下的t值,它們互相矛盾,所以不存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=4,C為 的中點,D、E分別為OA,OB的中點,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為
A(﹣1,1),B(﹣3,1),C(﹣1,4).
①畫出△ABC關(guān)于y軸對稱的△A1B1C1;
②將△ABC繞著點B順時針旋轉(zhuǎn)90°后得到△A2BC2 , 請在圖中畫出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓的直徑,點D是 的中點,∠ABC=50°,則∠DAB等于(
A.55°
B.60°
C.65°
D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)500名員工參加安全生產(chǎn)知識測試,成績記為A,B,C,D,E共5個等級,為了解本次測試的成績(等級)情況,現(xiàn)從中隨機抽取部分員工的成績(等級),統(tǒng)計整理并制作了如下的統(tǒng)計圖:
(1)求這次抽樣調(diào)查的樣本容量,并補全圖①;
(2)如果測試成績(等級)為A,B,C級的定位優(yōu)秀,請估計該企業(yè)參加本次安全生產(chǎn)知識測試成績(等級)達到優(yōu)秀的員工的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=4 cm,則EF+CF的長為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠BAC=2∠B,⊙O的切線AP與OC的延長線相交于點P,若PA= cm,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點O在直線AB上,點A1、A2、A3 , …在射線OA上,點B1、B2、B3 , …在射線OB上,圖中的每一個實線段和虛線段的長均為一個單位長度,一個動點M從O點出發(fā),按如圖所示的箭頭方向沿著實線段和以O(shè)為圓心的半圓勻速運動,速度為每秒1個單位長度,按此規(guī)律,則動點M到達A101點處所需時間為秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣ x+1分別交x軸、y軸于點A、B,M是x軸正半軸上一動點,并以每秒1個單位的速度從O點向x軸正方向運動,過點M作x軸的垂線l,與拋物線y=x2 x﹣2交于點P,與直線AB交于點Q,連結(jié)BP,經(jīng)過t秒時,△PBQ是以BQ為腰的等腰三角形,則t的值是

查看答案和解析>>

同步練習(xí)冊答案