【題目】如圖1,在正方形ABCD中,點O是對角線AC,BD的交點,點E在BC邊上(點E不和BC的端點重合),且BE=BC,連接AE交OB于點F,過點B作AE的垂線BG交OC于點G,連接GE.
(1)求證:OF=OG;
(2)用含的代數(shù)式表示tan∠OBG的值;
(3)如圖2,當(dāng)∠GEC=90°時,求的值.
【答案】(1) 證明見解析;(2);(3).
【解析】
(1)由正方形的性質(zhì)可得AO=BO,AC⊥BD,由余角的性質(zhì)可得∠FAO=∠FBG,由“ASA”可證△AOF≌△BOG,可得OF=OG;
(2)根據(jù)第一問條件推導(dǎo)出FG∥BC∥AD,從而由平行線分線段成比例得到,通過已知條件可推斷AG=GC,設(shè)GC=,并表示其他線段即可解決問題;
(3)根據(jù)第二問結(jié)論,使OG用OC來表示,進而使GC用BC來表示,另根據(jù)BE=BC可得EC=BC,從而用BC表示CG,列出方程即可解決問題.
解:(1)證明:∵四邊形ABCD是正方形,
∴OA=OB,AO⊥BO,
由∵AE⊥BG,∴∠OAF=∠OBG,
∴Rt△AOF≌Rt△BOG,
∴OF=OG;
(2)
連接FG,
∵OF=OG,AC⊥BD,
∴∠OGF=45°=∠OCB,∴FG∥BC∥AD,
∴,
∵BE=BC=AD,
∴AG=GC,
設(shè)GC=,則AG=,AC=,
∴OB=OC=AC=,
OG=OC-GC=,
∴tan∠OBG==;
(3)解:如圖,
當(dāng)∠GEC=90°時,∵∠GCE=45°,
∴△GEC是等腰直角三角形,
∴GC=EC,
∵tan∠OBG==,
∴OG=OB=OC,
∴GC=OC-OG=OC
=BC,
又∵BE=BC,
∴EC=BC-BE=BC,
∴BC=BC,
即:,
解得:或(舍去),
故.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“元旦大酬賓!”,某商場設(shè)計的促銷活動如下:在一個不透明的箱子里放有3張相同的卡片,卡片上分別標(biāo)有“10元”、“20元”和“30元”的字樣,規(guī)定:在本商場同一日內(nèi),顧客每消費滿300元,就可以在箱子里摸出一張卡片,記下錢數(shù)后放回,再從中摸出一張卡片.商場根據(jù)兩張卡片所標(biāo)金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.
(1)該顧客最多可得到 元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于40元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】京杭大運河是世界文化遺產(chǎn).綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,∠DBA=60°,求該段運河的河寬(即CH的長).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,6),B(2,0),C(6,0),D為線段BC上的動點,以AD為邊向右側(cè)作正方形ADEF,連接CF交DE于點P,則CP的最大值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列有個結(jié)論:①;②;③;④.請你將正確結(jié)論的番號都寫出來_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四張撲克牌的點數(shù)分別是2,5,6,8,除點數(shù)不同外,其余都相同,將它們洗勻后背面朝上放在桌上
(1)若從中隨機抽取一張牌,則抽出的牌的點數(shù)是偶數(shù)的概率為 ;
(2)若隨機抽取一張牌不放回,接著再抽取一張牌,請用列表法或畫樹狀圖法(只選其中一種)表示出所有可能出現(xiàn)的結(jié)果,并求所抽兩張牌的點數(shù)都是偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①表示一個時鐘的鐘面垂直固定于水平桌面上,其中分針上有一點A,當(dāng)鐘面顯示3點30分時,分針垂直于桌面,A點距桌面的高度為10cm.圖②表示當(dāng)鐘面顯示3點45分時,A點距桌面的高度為16cm,若鐘面顯示3點55分時,A點距桌面的高度為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內(nèi)任取一點D,連結(jié)AD(AD<AB),將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連結(jié)DE,CE,BD.
(1)直線BD和CE的位置關(guān)系是 ;
(2)猜測BD和CE的數(shù)量關(guān)系并證明;
(3)設(shè)直線BD,CE交于點P,把△ADE繞點A旋轉(zhuǎn),當(dāng)∠EAC=90°,AB=2,AD=1時,直接寫出PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年新冠肺炎爆發(fā),省疾控中心組織醫(yī)護人員和防疫藥品趕赴湖北救援,裝載防疫藥品的貨運飛機從機場出發(fā),以600千米/小時的速度飛行,半小時后醫(yī)護人員乘坐客運飛機從同一個機場出發(fā),客運飛機速度是貨運飛機速度的1.2倍,結(jié)果客運飛機比裝載防疫藥品的貨運飛機遲15分鐘到達湖北.
(1)設(shè)貨運飛機全程飛行時間為t小時,用t表示出發(fā)的機場到湖北的路程s;
(2)求出發(fā)的機場到湖北的路程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com