【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別為,將線段平移,若平移后的對(duì)應(yīng)點(diǎn)為,則的值是_____________

【答案】3

【解析】

首先不考慮點(diǎn)A的縱坐標(biāo)的變化情況,由A點(diǎn)平移前后的橫坐標(biāo)分別為-2、-1,確定點(diǎn)A的平移方式;再結(jié)合點(diǎn)B平移前后的縱坐標(biāo)的變化情況確定點(diǎn)A的平移方式;、綜合分析,確定出線段AB的平移過(guò)程,進(jìn)而求出m、n的值,代入待求式中計(jì)算即可得到答案.

解:不考慮點(diǎn)A的縱坐標(biāo)的變化情況,由A點(diǎn)平移前后的橫坐標(biāo)分別為-2、-1,可得A點(diǎn)向右平移了1個(gè)單位.

不考慮點(diǎn)B的橫坐標(biāo)的變化情況,由B點(diǎn)平移前后的縱坐標(biāo)分別為13,可得B點(diǎn)向上平移了2個(gè)單位.

由此得線段AB的平移的過(guò)程是:向右平移1個(gè)單位,再向上平移2個(gè)單位,

所以點(diǎn)A、B均按此規(guī)律平移,由此可得,

故答案為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BF為⊙O的直徑,直線AC交⊙O于A,B兩點(diǎn),點(diǎn)D在⊙O上,BD平分∠OBC,DE⊥AC于點(diǎn)E.

(1)求證:直線DE是⊙O的切線;
(2)若 BF=10,sin∠BDE= ,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中,小正方形的邊長(zhǎng)為1,△ABC的頂點(diǎn)在格點(diǎn)上.

(1)判斷△ABC是否是直角三角形?并說(shuō)明理由.

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC中,CDABD,且BD : AD : CD2 : 3 : 4,

1)求證:AB=AC;

2)已知SABC40cm2,如圖2,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A 運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止. 設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點(diǎn)E是邊AC的中點(diǎn),問(wèn)在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=4

1)若BC=2,求AB的長(zhǎng);

2)若BC=a,AB=c,求代數(shù)式(c22﹣(a+42+4c+2a+3)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,學(xué)校有一塊三角形草坪,數(shù)學(xué)課外小組的同學(xué)測(cè)得其三邊的長(zhǎng)分別為AB=200米,AC=160米,BC=120米.

(1)小明根據(jù)測(cè)量的數(shù)據(jù),猜想△ABC是直角三角形,請(qǐng)判斷他的猜想是否正確,并說(shuō)明理由;

(2)若計(jì)劃修一條從點(diǎn)CBA邊的小路CH,使CHAB于點(diǎn)H,求小路CH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰三角形ABC的底邊長(zhǎng)BC=20cm,DAC上的一點(diǎn),且BD=16cmCD=12cm

1)求證:BDAC;

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線AB,CD被直線EF所截,如果要添加條件,使得MQ∥NP,那么下列條件中能判定MQ∥NP的是( )

A. ∠1∠2 B. ∠BMF∠DNF

C. ∠AMQ∠CNP D. ∠1∠2,∠BMF∠DNF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCCED均為等邊三角形,且B,CD三點(diǎn)共線.線段BE,AD相交于點(diǎn)O,AFBE于點(diǎn)F.若OF=1,則AF的長(zhǎng)為( 。

A. 1 B. C. D. 2

查看答案和解析>>

同步練習(xí)冊(cè)答案