【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A( ,0),B(0,2),則點B2017的坐標(biāo)為 .
【答案】(6052,0)
【解析】解:解:∵AO= ,BO=2,
∴AB= = ,
∴OA+AB1+B1C2=6,
∴B2的橫坐標(biāo)為:6,且B2C2=2,
∴B4的橫坐標(biāo)為:2×6=12,
∴點B2016的橫坐標(biāo)為:2016÷2×6=6048.
∴點B2016的縱坐標(biāo)為:2.
∴點B2016的坐標(biāo)為:(6048,2),
∴B2017的橫坐標(biāo)為6048+ + =6052,
∴點B2017的坐標(biāo)為,6062,0),
故答案為(6052,0)
首先根據(jù)已知求出三角形三邊長度,然后通過旋轉(zhuǎn)發(fā)現(xiàn),B、B2、B4…,即可得每偶數(shù)之間的B相差6個單位長度,根據(jù)這個規(guī)律可以求得B2017的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點O,頂點為A(1,1),且與直線y=x﹣2交于B,C兩點.
(1)求拋物線的解析式及點C的坐標(biāo);
(2)求證:△ABC是直角三角形;
(3)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O(shè),M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角墻角AOB(OA⊥OB,且OA、OB長度不限)中,要砌20m長的墻,與直角墻角AOB圍成地面為矩形的儲倉,且地面矩形AOBC的面積為96m2 .
(1)求這地面矩形的長;
(2)有規(guī)格為0.80×0.80和1.00×1.00(單位:m)的地板磚單價分別為55元/塊和80元/塊,若只選其中一種地板磚都恰好能鋪滿儲倉的矩形地面(不計縫隙),用哪一種規(guī)格的地板磚費用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組借助無人飛機航拍校園.如圖,無人飛機從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,下列給出四個結(jié)論中,正確結(jié)論的個數(shù)是( )個
①c>0;
②若點B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點,則y1<y2;
③2a﹣b=0;
④ <0;
⑤4a﹣2b+c>0.
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1.請同學(xué)們利用網(wǎng)格線進行畫圖:
(1)在圖1中,畫一個頂點為格點、面積為5的正方形;
(2)在圖2中,已知線段AB、CD,畫線段EF,使它與AB、CD組成軸對稱圖形;(要求畫出所有符合題意的線段)
(3)在圖3中,找一格點D,滿足:①到CB、CA的距離相等;②到點A、C的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC=AC=12cm,現(xiàn)有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為1cm/s,點N的速度為2cm/s.當(dāng)點N第一次到達B點時,M、N同時停止運動.
(1)點M、N運動幾秒后,M、N兩點重合?
(2)點M、N運動幾秒后,可得到等邊三角形△AMN?
(3)當(dāng)點M、N在BC邊上運動時,能否得到以MN為底邊的等腰三角形?如存在,請求出此時M、N運動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠ACD是△ABC的外角,∠A=40°,BE平分∠ABC,CE平分∠ACD,且BE、CE交于點E.
(1)求∠E的度數(shù).
(2)請猜想∠A與∠E之間的數(shù)量關(guān)系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AO=BO,直線MN經(jīng)過點O, 且AC⊥MN于C,BD⊥MN于D
(1) 當(dāng)直線MN繞點O旋轉(zhuǎn)到圖①的位置時,求證:CD=AC+BD;
(2) 當(dāng)直線MN繞點O旋轉(zhuǎn)到圖②的位置時,求證:CD=AC-BD;
(3) 當(dāng)直線MN繞點O旋轉(zhuǎn)到圖③的位置時,試問:CD、AC、BD有怎樣的等量關(guān)系?請寫出這個等量關(guān)系,并加以證明。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com