【題目】閱讀下面的材料:
解方程x4﹣7x2+12=0這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:設(shè)x2=y,則x4=y2 , ∴原方程可化為:y2﹣7y+12=0,解得y1=3,y2=4,當(dāng)y=3時(shí),x2=3,x=± ,當(dāng)y=4時(shí),x2=4,x=±2.∴原方程有四個(gè)根是:x1= ,x2=﹣ ,x3=2,x4=﹣2,以上方法叫換元法,達(dá)到了降次的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,運(yùn)用上述方法解答下列問(wèn)題.
(1)解方程:(x2+x)2﹣5(x2+x)+4=0;
(2)已知實(shí)數(shù)a,b滿足(a2+b2)2﹣3(a2+b2)﹣10=0,試求a2+b2的值.
【答案】
(1)解:設(shè)y=x2+x,則y2﹣5y+4=0,
整理,得
(y﹣1)(y﹣4)=0,
解得y1=1,y2=4,
當(dāng)x2+x=1即x2+x﹣1=0時(shí),解得:x= ;
當(dāng)當(dāng)x2+x=4即x2+x﹣4=0時(shí),解得:x= ;
綜上所述,原方程的解為x1 , 2= ,x3 , 4=
(2)解:設(shè)x=a2+b2 , 則x2﹣3x﹣10=0,
整理,得
(x﹣5)(x+2)=0,
解得y1=5,y2=﹣2(舍去),
故a2+b2=5.
【解析】(1)利用換元的思想,把x2+x看做一個(gè)整體,先求出x2+x,再分別求出x的值;(2)利用換元法求出a2+b2后,可判斷a2+b20,所求出的負(fù)值要舍掉.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A是雙曲線 與直線 在第二象限的交點(diǎn),AB⊥ 軸于點(diǎn)B且S△ABO= .
(1)求這兩個(gè)函數(shù)的解析式;
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A,C的坐標(biāo);
(3)求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)計(jì)劃從辦公用品公司購(gòu)買(mǎi)A,B兩種型號(hào)的小黑板.經(jīng)洽談,購(gòu)買(mǎi)一塊A型小黑板比購(gòu)買(mǎi)一塊B型小黑板多用20元,且購(gòu)買(mǎi)5塊A型小黑板和4塊B型小黑板共需820元.
(1)求購(gòu)買(mǎi)一塊A型小黑板、一塊B型小黑板各需多少元;
(2)根據(jù)該中學(xué)實(shí)際情況,需從公司購(gòu)買(mǎi)A,B兩種型號(hào)的小黑板共60塊,要求購(gòu)買(mǎi)A,B兩種型號(hào)小黑板的總費(fèi)用不超過(guò)5240元.并且購(gòu)買(mǎi)A型小黑板的數(shù)量不小于購(gòu)買(mǎi)B型小黑板數(shù)量的.則該中學(xué)從公司購(gòu)買(mǎi)A,B兩種型號(hào)的小黑板有哪幾種方案.哪種方案的總費(fèi)用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知AB∥CD,EF⊥AB于點(diǎn)O,∠FGC=125°,求∠EFG的度數(shù).
下面提供三種思路:
(1)過(guò)點(diǎn)F作FH∥AB;
(2)延長(zhǎng)EF交CD于M;
(3)延長(zhǎng)GF交AB于K.
請(qǐng)你利用三個(gè)思路中的兩個(gè)思路,
將圖形補(bǔ)充完整,求∠EFG的度數(shù).
解(一):
解(二):
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角三角形△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D,BE平分∠ABC交AC于點(diǎn)E,AD、BE相交于點(diǎn)F,過(guò)點(diǎn)D作DG∥AB,過(guò)點(diǎn)B作BG⊥DG交DG于點(diǎn)G.下列結(jié)論:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正確的是_________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)興趣小組開(kāi)展了一次活動(dòng),過(guò)程如下:如圖1,等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將三角板中含45°角的頂點(diǎn)放在A上,斜邊從AB邊開(kāi)始繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.
(1)小敏在線段BC上取一點(diǎn)M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請(qǐng)你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)0°<α≤45°時(shí),小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2 . 同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決:
小穎的想法:將△ABD沿AD所在的直線對(duì)折得到△ADF,連接EF(如圖2);
小亮的想法:將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3);
請(qǐng)你從中任選一種方法進(jìn)行證明.
(3)小敏繼續(xù)旋轉(zhuǎn)三角板,請(qǐng)你繼續(xù)研究:當(dāng)135°<α<180°時(shí)(如圖4),等量BD2+CE2=DE2是否仍然成立?請(qǐng)作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,M、N分別是AB、AC的中點(diǎn),D、E為BC上的點(diǎn),連接DN、EM,若AB=5cm,BC=8cm,DE=4cm,則圖中陰影部分的面積為( )
A.1cm2
B.1.5cm2
C.2cm2
D.3cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷(xiāo)一種泰山旅游紀(jì)念品,4月的營(yíng)業(yè)額為2000元,為擴(kuò)大銷(xiāo)售量,5月份該商店對(duì)這種紀(jì)念品打9折銷(xiāo)售,結(jié)果銷(xiāo)售量增加20件,營(yíng)業(yè)額增加700元.
(1)求該種紀(jì)念品4月份的銷(xiāo)售價(jià)格;
(2)若4月份銷(xiāo)售這種紀(jì)念品獲利800元,5月份銷(xiāo)售這種紀(jì)念品獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲,乙,丙三種筆,已知買(mǎi)甲種筆2支和乙種1支,丙種3支共12.5元,買(mǎi)甲種筆1支,乙種,4支,丙種5支,共18.5元,那么買(mǎi)甲種筆1支和乙種2支,丙種3支共需___________元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com