【題目】在平面直角坐標系中,拋物線y=ax2+bx+c(a,b,c是常數(shù),a>0)的部分圖象如圖所示,直線x=1是它的對稱軸.若一元二次方程ax2+bx+c=0的一個根x1的取值范圍是2<x1<3,則它的另一個根x2的取值范圍是

【答案】﹣1<x2<0
【解析】解:由圖象可知x=2時,y<0;x=3時,y>0;由于直線x=1是它的對稱軸,則由二次函數(shù)圖象的對稱性可知:x=0時,y<0;x=﹣1時,y>0;
所以另一個根x2的取值范圍為﹣1<x2<0.
所以答案是:﹣1<x2<0.
【考點精析】掌握拋物線與坐標軸的交點是解答本題的根本,需要知道一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,拋物線y=﹣ +bx+c與x軸相交于點A,B,與y軸相交于點C,直線y=x+4經(jīng)過A,C兩點,

(1)求拋物線的表達式;
(2)如果點P,Q在拋物線上(P點在對稱軸左邊),且PQ∥AO,PQ=2AO,求P,Q的坐標;
(3)動點M在直線y=x+4上,且△ABC與△COM相似,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣ x+b與拋物線的另一個交點為D.

(1)若點D的橫坐標為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:
(1)(4x﹣1)2﹣9=0
(2)3(x﹣2)2=2﹣x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車供游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金是x(元).發(fā)現(xiàn)每天的營運規(guī)律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.當每輛車的日租金為多少元時,每天的凈收入最多?(注:凈收入=租車收入﹣管理費)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,O為直線AB上一點,過點O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點O以每秒3°的速度沿順時針方向旋轉(zhuǎn)一周.如圖2,經(jīng)過t秒后,OM恰好平分∠BOC.①求t的值;②此時ON是否平分∠AOC?請說明理由;
(2)在(1)問的基礎上,若三角板在轉(zhuǎn)動的同時,射線OC也繞O點以每秒6°的速度沿順時針方向旋轉(zhuǎn)一周,如圖3,那么經(jīng)過多長時間OC平分∠MON?請說明理由;
(3)在(2)問的基礎上,經(jīng)過多長時間OC平分∠MOB?請畫圖并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:﹣32﹣( 1+2sin30°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE的交點,CD=4,則線段DF的長度為( )

A.
B.4
C.
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角△ABC中,AC是最短邊;以AC中點O為圓心, AC長為半徑作⊙O,交BC于E,過O作OD∥BC交⊙O于D,連接AE、AD、DC.
(1)求證:D是 的中點;
(2)求證:∠DAO=∠B+∠BAD;
(3)若 ,且AC=4,求CF的長.

查看答案和解析>>

同步練習冊答案