【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P, ACPC,∠COB2PCB

1)求證:PC是⊙O的切線;

2)求證:BCAB

3)點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)N,若AB8,求MN·MC的值.

【答案】1)見解析;(2)見解析;(332

【解析】

1)已知C在圓上,故只需證明OCPC垂直即可;根據(jù)圓周角定理,易得∠PCB+OCB=90°,即OCCP;故PC是⊙O的切線;
2AB是直徑;故只需證明BC與半徑相等即可;
3)連接MA,MB,由圓周角定理可得∠ACM=BCM,進(jìn)而可得MBN∽△MCB,故BM2=MNMC;代入數(shù)據(jù)可得MNMC=BM2=8

1)證明:∵OA=OC,   

∴∠A=ACO

又∵∠COB=2A,∠COB=2PCB,  

∴∠A=ACO=PCB

又∵AB是⊙O的直徑   

 ∴∠ACO+OCB=90°

∴∠PCB+OCB=90°

OCCP,

OC是⊙O的半徑.   

 ∴PC是⊙O的切線.

2)證明:∵AC=PC,  

∴∠A=P,

∴∠A=ACO=PCB=P

又∵∠COB=A+ACO,∠CBO=P+PCB,

∴∠COB=CBO,    

BC=OC

3)解:連接MB,MA

∵點(diǎn)M的中點(diǎn),

∴∠ACM=BCM

∵∠ACM=ABM,  

∴∠BCM=ABM

又∵∠BMN=CMB

∴△MBN∽△MCB

  

又∵AB是⊙O的直徑,

∴∴∠AMB=90°AM=BM

AB=8,  

  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)數(shù)學(xué)興趣小組的學(xué)生進(jìn)行社會(huì)實(shí)踐活動(dòng)時(shí),想利用所學(xué)的解直角三角形的知識(shí)測(cè)量教學(xué)樓的高度,他們先在點(diǎn)D處用測(cè)角儀測(cè)得樓頂M的仰角為30°,再沿DF方向前行40米到達(dá)點(diǎn)E處,在點(diǎn)E處測(cè)得樓頂M的仰角為45°,已知測(cè)角儀的高AD1.5米,請(qǐng)根據(jù)他們的測(cè)量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,AC是對(duì)角線,今有較大的直角三角板,一邊始終經(jīng)過點(diǎn)B,直角頂點(diǎn)P在射線AC上移動(dòng),另一邊交DC于點(diǎn)Q.

(1)如圖①,當(dāng)點(diǎn)Q在DC邊上時(shí),猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;

(2)如圖②,當(dāng)點(diǎn)Q落在DC的延長(zhǎng)線上時(shí),猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,直徑AB2CA切⊙OA,BC交⊙OD,若∠C45°,求:

1BD的長(zhǎng);

2)陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)EF,連結(jié)BDDP,BDCF相交于點(diǎn)H.給出下列結(jié)論,其中正確結(jié)論的個(gè)數(shù)是(

①△BDE∽△DPE;②;③;④tanDBE=.

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝中華人民共和國(guó)成立70周年,深圳舉辦了燈光秀,某數(shù)學(xué)興趣小組為測(cè)量平安金融中心”AB的高度,他們?cè)诘孛?/span>C處測(cè)得另一幢大廈DE的頂部E處的仰角為32°,測(cè)得平安中心”AB的頂部A處的仰角為44°.登上大廈DE的頂部E處后,測(cè)得平安中心”AB的頂部A處的仰角為60°,(如圖).已知CD、B三點(diǎn)在同一水平直線上,且CD=400米,求平安金融中心AB的高度.(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85tan32°≈0.62,tan44°≈0.99,1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(教材呈現(xiàn))下圖是華師版九年級(jí)上冊(cè)數(shù)學(xué)教材第78頁(yè)的部分內(nèi)容.

1 求證:三角形的一條中位線與第三邊上的中線互相平分.

已知:如圖,在中,,.

求證:、互相平分.

證明:連結(jié).

請(qǐng)根據(jù)教材提示,結(jié)合圖①,寫出完整的解題過程.

(結(jié)論應(yīng)用)如圖②,連結(jié)圖①的、,分別與、交于點(diǎn)、、.

1)若,求點(diǎn)、之間的距離.

2)若四邊形的面積為2,則的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(40)、(0,2),點(diǎn)C為線段AB上任意一點(diǎn)(不與點(diǎn)AB重合).CDOA于點(diǎn)D,點(diǎn)EDC的延長(zhǎng)線上,EFy軸于點(diǎn)F,若點(diǎn)CDE中點(diǎn),則四邊形ODEF的周長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在RtABC中,ACB=90°,AC=3BC=4,點(diǎn)EF分別在邊AB、AC上,將AEF沿直線EF折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在邊BC上.若BDE是直角三角形,則CF的長(zhǎng)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案