精英家教網 > 初中數學 > 題目詳情
(2006•荊門)在平面直角坐標系中,已知A(0,3),B(4,0),設P、Q分別是線段AB、OB上的動點,它們同時出發(fā),點P以每秒3個單位的速度從點A向點B運動,點Q以每秒1個單位的速度從點B向點O運動.設運動時間為t(秒).
(1)用含t的代數式表示點P的坐標;
(2)當t為何值時,△OPQ為直角三角形?
(3)在什么條件下,以Rt△OPQ的三個頂點能確定一條對稱軸平行于y軸的拋物線?選擇一種情況,求出所確定的拋物線的解析式.

【答案】分析:(1)作PM⊥y軸,PN⊥x軸,那么PM就是P點的橫坐標,PN就是P點的縱坐標.然后可通過相似三角形AMP和AOB求出MP的長,同理可通過相似三角形BPN和BAP求出PN的長,即可得出P點的坐標.
(2)本題要分情況進行討論:
①當∠POQ=90°時,P,A重合此時t=0;
當∠OPQ=90°時,可根據射影定理得出PN2=ON•NQ,由此可求出t的值.
當∠OPQ=90°時,Q,N重合,可用BQ的長表示出P點的橫坐標,以此可求出t的值.
(3)很顯然當∠OPQ=90°時,可確定一條符合條件的拋物線,可根據(2)中得出的∠OPQ=90°時t的取值,確定出P,Q的坐標,然后用待定系數法即可求出這條拋物線的解析式.
解答:解:(1)作PM⊥y軸,PN⊥x軸.
∵OA=3,OB=4,
∴AB=5.
∵PM∥x軸,
,

∴PM=t.
∵PN∥y軸,
,
,
∴PN=3-t,
∴點P的坐標為(t,3-t).

(2)①當∠POQ=90°時,t=0,△OPQ就是△OAB,為直角三角形.
②當∠OPQ=90°時,△OPN∽△PQN,
∴PN2=ON•NQ.
(3-t)2=t(4-t-t).
化簡,得19t2-34t+15=0,
解得t=1或t=
③當∠OQP=90°時,N、Q重合.
∴4-t=t,
∴t=
綜上所述,當t=0,t=1,t=,t=時,△OPQ為直角三角形.

(3)當t=1或t=時,即∠OPQ=90°時,
以Rt△OPQ的三個頂點可以確定一條對稱軸平行于y軸的拋物線.
當t=1時,點P、Q、O三點的坐標分別為P(,),Q(3,0),O(0,0).
設拋物線的解析式為y=a(x-3)(x-0),
即y=a(x2-3x).
將P(,)代入上式,
得a=-
∴y=-(x2-3x).
即y=-x2+x.
說明:若選擇t=時,點P、Q、O三點的坐標分別是P(),Q(,0),O(0,0).
求得拋物線的解析式為y=-x2+x.
點評:本題著重考查了待定系數法求二次函數解析式、三角形相似、直角三角形的判定等知識點,考查學生分類討論,數形結合的數學思想方法.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年浙江省紹興市紹興縣錢清鎮(zhèn)中數學中考模擬試卷(解析版) 題型:解答題

(2006•荊門)在平面直角坐標系中,已知A(0,3),B(4,0),設P、Q分別是線段AB、OB上的動點,它們同時出發(fā),點P以每秒3個單位的速度從點A向點B運動,點Q以每秒1個單位的速度從點B向點O運動.設運動時間為t(秒).
(1)用含t的代數式表示點P的坐標;
(2)當t為何值時,△OPQ為直角三角形?
(3)在什么條件下,以Rt△OPQ的三個頂點能確定一條對稱軸平行于y軸的拋物線?選擇一種情況,求出所確定的拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:2006年湖北省荊門市中考數學試卷(解析版) 題型:解答題

(2006•荊門)在平面直角坐標系中,已知A(0,3),B(4,0),設P、Q分別是線段AB、OB上的動點,它們同時出發(fā),點P以每秒3個單位的速度從點A向點B運動,點Q以每秒1個單位的速度從點B向點O運動.設運動時間為t(秒).
(1)用含t的代數式表示點P的坐標;
(2)當t為何值時,△OPQ為直角三角形?
(3)在什么條件下,以Rt△OPQ的三個頂點能確定一條對稱軸平行于y軸的拋物線?選擇一種情況,求出所確定的拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:2009年江蘇省南通市通州區(qū)育才中學初三數學測試卷(5)(解析版) 題型:填空題

(2006•荊門)在方格紙中,每個小格的頂點稱為格點,以格點連線為邊的三角形叫格點三角形.在如圖5×5的方格中,作格點△ABC和△OAB相似(相似比不為1),則點C的坐標是   

查看答案和解析>>

科目:初中數學 來源:2009年江蘇省南通市通州區(qū)育才中學初三數學測試卷(2)(解析版) 題型:填空題

(2006•荊門)在方格紙中,每個小格的頂點稱為格點,以格點連線為邊的三角形叫格點三角形.在如圖5×5的方格中,作格點△ABC和△OAB相似(相似比不為1),則點C的坐標是   

查看答案和解析>>

同步練習冊答案