【題目】拋物線yax2+bx3a0)與直線ykx+ck0)相交于A(﹣10)、B2,﹣3)兩點(diǎn),且拋物線與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)求出C、D兩點(diǎn)的坐標(biāo)

3)在第四象限拋物線上有一點(diǎn)P,若△PCD是以CD為底邊的等腰三角形,求出點(diǎn)P的坐標(biāo).

【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(1+,﹣2).

【解析】

1)把A(﹣10)、B2,﹣3)兩點(diǎn)坐標(biāo)代入yax2+bx3可得拋物線解析式.

2)當(dāng)x0時可求C點(diǎn)坐標(biāo),求出直線AB解析式,當(dāng)x0可求D點(diǎn)坐標(biāo).

3)由題意可知P點(diǎn)縱坐標(biāo)為﹣2,代入拋物線解析式可求P點(diǎn)橫坐標(biāo).

解:(1)把A(﹣1,0)、B2,﹣3)兩點(diǎn)坐標(biāo)代入

yax2+bx3可得

解得

yx22x3

2)把x0代入yx22x3中可得y=﹣3C0,﹣3

設(shè)ykx+b,把A(﹣10)、B2,﹣3)兩點(diǎn)坐標(biāo)代入

解得

y=﹣x1

D0,﹣1

3)由C0,﹣3),D0,﹣1)可知CD的垂直平分線經(jīng)過(0,﹣2

P點(diǎn)縱坐標(biāo)為﹣2,

x22x3=﹣2

解得:x,∵x0x1+

P1+,﹣2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面內(nèi),將兩個全等的等腰直角三角形擺放在一起,為公共頂點(diǎn),,若固定不動,繞點(diǎn)旋轉(zhuǎn),、與邊的交點(diǎn)分別為、(點(diǎn)不與點(diǎn)重合,點(diǎn)不與點(diǎn)重合).

(1)求證:;

(2)在旋轉(zhuǎn)過程中,試判斷等式是否始終成立,若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,平移一條拋物線,如果平移后的新拋物線經(jīng)過原拋物線頂點(diǎn),且新拋物線的對稱軸是y軸,那么新拋物線稱為原拋物線的“影子拋物線”.

1)已知原拋物線表達(dá)式是,求它的影子拋物線的表達(dá)式;

2)已知原拋物線經(jīng)過點(diǎn)(1,0),且它的影子拋物線的表達(dá)式是,求原拋物線的表達(dá)式;

3)小明研究后提出:“如果兩條不重合的拋物線交y軸于同一點(diǎn),且它們有相同的“影子拋物線”,那么這兩條拋物線的頂點(diǎn)一定關(guān)于y軸對稱.”你認(rèn)為這個結(jié)論成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB4E,F分別是邊AB,AD上的動點(diǎn),AEDF,連接DE,CF交于點(diǎn)P,過點(diǎn)PPKBC,且PK2,若∠CBK的度數(shù)最大時,則BK長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第 24 屆冬奧會將于 2022 年在北京和張家口舉行,冬奧會的項目有滑雪(如跳臺滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有 5 張形狀、大小、質(zhì)地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現(xiàn)將這 5 張卡片洗勻后正面向下放在桌子上,從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是矩形ABCD的對角線的交點(diǎn),E,F(xiàn),G,H分別是OA,OB,OC,OD上的點(diǎn),且AE=BF=CG=DH.

(1)求證:四邊形EFGH是矩形;

(2)若E,F(xiàn),G,H分別是OA,OB,OC,OD的中點(diǎn),且DG⊥AC,OF=2cm,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲、乙、丙三人組成的籃球訓(xùn)練小組,他們?nèi)酥g進(jìn)行互相傳球練習(xí),籃球從一個人手中隨機(jī)傳到另外一個人手中計作傳球一次,共連續(xù)傳球三次.

1)若開始時籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是  ;

2)若開始時籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時拋擲3枚硬幣做游戲,其中1元硬幣1枚,5角硬幣兩枚.

1)求3枚硬幣同時正面朝上的概率.

2)小張、小王約定:正面朝上按面值算,背面朝上按0元算.3枚落地后,若面值和為1.5元,則小張獲得1分;若面值和為1元,則小王得1分.誰先得到10分,誰獲勝,請問這個游戲是否公平?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,有任意三角形,當(dāng)這個三角形的一條邊上的中線等于這條邊的一半時,稱這個三角形叫和諧三角形,這條邊叫和諧邊,這條中線的長度叫和諧距離

1)已知A2,0),B0,4),C1,2),D4,1),這個點(diǎn)中,能與點(diǎn)O組成和諧三角形的點(diǎn)是 ,和諧距離 ;

2)連接BD,點(diǎn)M,NBD上任意兩個動點(diǎn)(點(diǎn)M,N不重合),點(diǎn)E是平面內(nèi)任意一點(diǎn),EMN是以MN和諧邊和諧三角形,求點(diǎn)E的橫坐標(biāo)t的取值范圍;

3)已知⊙O的半徑為2,點(diǎn)P是⊙O上的一動點(diǎn),點(diǎn)Q是平面內(nèi)任意一點(diǎn),OPQ和諧三角形,且和諧距離2,請描述出點(diǎn)Q所在位置.

查看答案和解析>>

同步練習(xí)冊答案