如果m、n是兩個(gè)不相等的實(shí)數(shù),且滿足m2-2m=1,n2-2n=1,那么代數(shù)式2m2+4n2-4n+1994=   
【答案】分析:主要利用根與系數(shù)的關(guān)系得出m+n=2,把所求的代數(shù)式變形得出關(guān)于m+n的形式,整體代入即可求值.
解答:解:根據(jù)題意可知m,n是x2-2x-1=0兩個(gè)不相等的實(shí)數(shù)根.
則m+n=2,
又m2-2m=1,n2-2n=1
2m2+4n2-4n+1994
=2(2m+1)+4(2n+1)-4n+1994
=4m+2+8n+4-4n+1994
=4(m+n)+2000
=4×2+2000
=2008.
點(diǎn)評(píng):主要考查了代數(shù)式求值問題.代數(shù)式中的字母表示的數(shù)沒有明確告知,而是隱含在題設(shè)中,首先應(yīng)從題設(shè)中獲取關(guān)于n,m的代數(shù)式的值,然后把所求的代數(shù)式變形整理出題設(shè)中的形式,利用“整體代入法”求代數(shù)式的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形鐵片ABCD的對(duì)角線AC,DB相交于點(diǎn)E,sin∠DAC=
35
,AE、DE的長(zhǎng)是方程x2-140x+k=0的兩根.
(1)求AD的長(zhǎng);
(2)如果M,N是AC上的兩個(gè)動(dòng)點(diǎn),分別以M,N為圓心作圓,使⊙M與邊從AB、AD相切,⊙N與邊BC,CD相切,且⊙M與⊙N相外切,設(shè)AM=t,⊙M與⊙N面積的和為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)某工廠要利用這種菱形鐵片(單位:mm)加工一批直徑為48mm,60mm,90mm的圓精英家教網(wǎng)形零件(菱形鐵片上只能加工同一直徑的零件,不計(jì)加工過程中的損耗),問加工哪種零件能最充分地利用這種鐵片并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:三點(diǎn)一測(cè)叢書九年級(jí)數(shù)學(xué)上 題型:044

關(guān)于多項(xiàng)式除以多項(xiàng)式

兩個(gè)多項(xiàng)式相除,可以先把這兩個(gè)多項(xiàng)式都按照同一字母降冪排列,然后再仿照兩個(gè)多位數(shù)相除的計(jì)算方法,用豎式進(jìn)行計(jì)算.例如,我們來計(jì)算(7x+2+6x2)÷(2x+1),仿照672÷21,計(jì)算如下:

  所以(7x+2+6x2)÷(2x+1)=3x+2.

  由上面的計(jì)算可知計(jì)算步驟大體是:先用除式的第一項(xiàng)2x去除被除式的第一項(xiàng)6x2,得商式的第一項(xiàng)3x,然后用3x去乘除式,把積6x2+3x寫在被除式下面(同類項(xiàng)對(duì)齊),從被除武中減去這個(gè)積,得4x+2,再把4x+2當(dāng)作新的被除式,按照上面的方法繼續(xù)計(jì)算,直到得出余式為止.上式的計(jì)算結(jié)果,余式等于0.如果一個(gè)多項(xiàng)式除以另一個(gè)多項(xiàng)式的余式為0,我們就說這個(gè)多項(xiàng)式能被另一個(gè)多項(xiàng)式整除,這時(shí)也可以說除式能整除被除式.

  整式除法也有不能整除的情況.按照某個(gè)字母降冪排列的整式除法,當(dāng)余式不是0而次數(shù)低于除式的次數(shù)時(shí),除法計(jì)算就不能繼續(xù)進(jìn)行了,這說明除式不能整除被除式.例如,計(jì)算(9x2+2x3+5)÷(4x-3+x2).

  解:

  所以商式為2x+1,余式為2x+8.

  與數(shù)的帶余除法類似,上面的計(jì)算結(jié)果有下面的關(guān)系:9x2+2x3+5=(4x-3+x2)(2x+1)+(2x+8).這里應(yīng)當(dāng)注意,按照x的降冪排列,如果被除式有缺項(xiàng),一定要留出空位.當(dāng)然,也可用補(bǔ)0的辦法補(bǔ)足缺項(xiàng).

請(qǐng)你用上面的方法計(jì)算下面這道題:(6x3+x2-1)÷(2x-1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:精編教材全解 數(shù)學(xué) 九年級(jí)上冊(cè) (配蘇科版) 蘇科版 題型:013

在一元二次方程ax2+bx+c=0(a≠0)中,如果a與c符號(hào)相異,那么方程(  ).

[  ]

A.有兩個(gè)不相等的實(shí)數(shù)根

B.有兩個(gè)相等的實(shí)數(shù)根

C.有一個(gè)實(shí)數(shù)根是0

D.沒有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中華題王 數(shù)學(xué) 九年級(jí)上 (北師大版) 北師大版 題型:044

已知關(guān)于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2

(1)求k的取值范圍.

(2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相

反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說明理由.

解:(1)根據(jù)題意,得

△=(2k-3)2-4(k-1)(k+1)

=4k2-12k+9-4k2+4

=-12k+13>0

∴k<

∴k<時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.

(2)存在.如果方程的兩個(gè)實(shí)數(shù)根互為相反數(shù),則

x1+x2=0

解得k=.檢驗(yàn)知,k==0的解.

所以,當(dāng)k=時(shí),方程的兩個(gè)實(shí)數(shù)根x1與x2互為相反數(shù).

當(dāng)你讀了上面的解答過程后,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫出正確的答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

在一元二次方程ax2+bx+c=0(a≠0)中,如果a與c符號(hào)相異,那么方程.


  1. A.
    有兩個(gè)不相等的實(shí)數(shù)根
  2. B.
    有兩個(gè)相等的實(shí)數(shù)根
  3. C.
    有一個(gè)實(shí)數(shù)根是0
  4. D.
    沒有實(shí)數(shù)根

查看答案和解析>>

同步練習(xí)冊(cè)答案