【題目】如圖,在封閉圖形ABCD中,AD∥BC,且AD=4,三角形ABC的周長為14,將三角形ABC平移到三角形DEF的位置.
(1)指出平移的方向和平移的距離;
(2)求封閉圖形ABFD的周長.
【答案】(1)平移的方向是沿AD(或者是沿BC)方向,平移的距離是4;(2) 封閉圖形ABFD的周長為22.
【解析】
(1)找到一對對應(yīng)點,那么從△ABC的對應(yīng)點到△DEF對應(yīng)點即為平移的方向,對應(yīng)點的連線即為平移的距離;(2)根據(jù)平移的性質(zhì)易得AD=CF=4,C梯形ABFD=AB+BF+DF+AD=AB+BC+CF+AC+AD=C△ABC+CF+AD,代入各值即可求出.
(1)平移的方向是沿AD(或者是沿BC)方向,平移的距離是4.
(2)根據(jù)平移的性質(zhì),得AD=CF=4,AC=DF,三角形DEF的周長為14.,封閉圖形ABFD的周長為AB+BF+DF+AD=(AB+BC+DF)+AD+CF=14+4×2=22.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知直線l1∥l2,且l3和l1,l2分別相交于A,B兩點,l4和l1,l2分別交于C,D兩點,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,
點P在線段AB上.
(1)若∠1=22°,∠2=33°,則∠3=________;
(2)試找出∠1,∠2,∠3之間的等量關(guān)系,并說明理由;
(3)應(yīng)用(2)中的結(jié)論解答下列問題;
如圖②,點A在B處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數(shù);
(4)如果點P在直線l3上且在A,B兩點外側(cè)運動時,其他條件不變,試探究∠1,∠2,∠3之間的關(guān)系(點P和A,B兩點不重合),直接寫出結(jié)論即可.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下列數(shù)組作為三角形的三條邊長,其中能構(gòu)成直角三角形的是( )
A. 1, ,3 B. , ,5 C. 1.5,2,2.5 D. , ,
【答案】C
【解析】A、12+()2≠32,不能構(gòu)成直角三角形,故選項錯誤;
B、(2+()2≠52,不能構(gòu)成直角三角形,故選項錯誤;
C、1.52+22=2.52,能構(gòu)成直角三角形,故選項正確;
D、())2+()2≠()2,不能構(gòu)成直角三角形,故選項錯誤.
故選:C.
【題型】單選題
【結(jié)束】
3
【題目】在Rt△ABC中,∠C=90°,AC=9,BC=12,則點C到斜邊AB的距離是( )
(A) (B) (C)9 (D)6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點B,連接PA交⊙O于點C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當AC=6,CP=3時,求sin∠PAB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形 ABCD中,O為 AC 的中點,過點O的直線分別與AB,CD交于點E,F(xiàn),連接 BF交AC于點M連接DE,BO.若∠COB=60°,F(xiàn)O=FC,則下列結(jié)論:①△AOE≌△COF;②△EOB≌△CMB;③FB⊥OC,OM=CM;④四邊形 EBFD 是菱形;⑤MB:OE=3:2其中正確結(jié)論的個數(shù)是( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九(1)、九(2)兩班的班長交流了為四川安雅地震災(zāi)區(qū)捐款的情況:
(Ⅰ)九(1)班班長說:“我們班捐款總數(shù)為1200元,我們班人數(shù)比你們班多8人.”
(Ⅱ)九(2)班班長說:“我們班捐款總數(shù)也為1200元,我們班人均捐款比你們班人均捐款多20%.”
請根據(jù)兩個班長的對話,求這兩個班級每班的人均捐款數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊上的點F處,若AD=2,BC=6,則EF的值是( 。
A. 2 B. C. D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com