【題目】如圖,拋物線與軸交于、兩點(diǎn),與交于點(diǎn),且,點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的值最小時(shí),的值是( )
A. B. C. D.
【答案】B
【解析】
作出點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)C′,連接C′D交x軸于點(diǎn)M,根據(jù)軸對(duì)稱性及兩點(diǎn)之間線段最短可知此時(shí)CM+DM最。
由ED∥y軸得到△C′OM∽△DEM,進(jìn)而得到=,將各線段的長(zhǎng)代入該式進(jìn)行求解即可.
∵點(diǎn)A(-1,0)在拋物線y=x2+bx-2上,
∴×(-1)2+b×(-1)-2=0.
解得b=-.
∴拋物線的解析式為:y=x2-x-2,
配方得:y= (x-)2-,
∴頂點(diǎn)D的坐標(biāo)為(,-).
作出點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)C′,則C′(0,2),OC′=2,連接C′D交x軸于點(diǎn)M,
根據(jù)軸對(duì)稱性及兩點(diǎn)之間線段最短,可知CM+DM的值最小.
∵ED∥y軸,
∴△C′OM∽△DEM,
∴=.
∵OM=m,EM=-m,OC′=2,ED=,=,
∴=.
解得m=.
故答案選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一塊直角三角板DEF放置在銳角△ABC上,使得該三角板的兩條直角邊DE、DF恰好分別經(jīng)過(guò)點(diǎn)B、C.
(1)如圖①,若∠A=40°時(shí),點(diǎn)D在△ABC內(nèi),則∠ABC+∠ACB= 度,∠DBC+∠DCB= 度,∠ABD+∠ACD= 度;
(2)如圖②,改變直角三角板DEF的位置,使點(diǎn)D在△ABC內(nèi),請(qǐng)?zhí)骄俊?/span>ABD+∠ACD與∠A之間存在怎樣的數(shù)量關(guān)系,并驗(yàn)證你的結(jié)論.
(3)如圖③,改變直角三角板DEF的位置,使點(diǎn)D在△ABC外,且在AB邊的左側(cè),直接寫(xiě)出∠ABD、∠ACD、∠A三者之間存在的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點(diǎn)F,在AB的延長(zhǎng)線上有點(diǎn)E,且EF=ED.
(1)求證:DE是⊙O的切線;
(2)若tanA=,探究線段AB和BE之間的數(shù)量關(guān)系,并證明;
(3)在(2)的條件下,若OF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在線段BG上,正方形ABCD和正方形DEFG的面積分別為3和7,則△CDE的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OC是∠AOB的角平分線,P是OC上一點(diǎn),PD⊥OA,PE⊥OB,垂足分別為D,E.F是OC上另一點(diǎn),連接DF,EF.求證:DF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形放置在平面直角坐標(biāo)系中,,所在直線為軸,所在直線為軸,反比例函數(shù)的圖象經(jīng)過(guò)的中點(diǎn),并且與交于點(diǎn),已知.則的長(zhǎng)等于( )
A. 2.5 B. 2 C. 1.5 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn),及原點(diǎn),頂點(diǎn)為.
(1)求拋物線的解析式:
(2)試判斷的形式,并說(shuō)明理由:
(3)是拋物線上第二象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)作軸,垂足為,是否存在點(diǎn)使得以點(diǎn)、、為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】京廣高速鐵路工程指揮部,要對(duì)某路段工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的投標(biāo)書(shū).從投標(biāo)書(shū)中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的;若由甲隊(duì)先做10天,剩下的工程再由甲、乙兩隊(duì)合作30天完成.
(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?
(2)已知甲隊(duì)每天的施工費(fèi)用為8.4萬(wàn)元,乙隊(duì)每天的施工費(fèi)用為5.6萬(wàn)元.工程預(yù)算的施工費(fèi)用為500萬(wàn)元.為縮短工期并高效完成工程,擬安排預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬(wàn)元?請(qǐng)給出你的判斷并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結(jié)論:
①∠CEG=2∠DCB;②∠DFB= ∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com