【題目】如圖, 是半圓的直徑,點延長線上 一點, 是⊙的切線,切點為,過點的延長線于點,連接.求證:

【答案】(1)證明見解析;(2)證明見解析.

【解析】試題分析:1)連接OC,由PC為⊙的切線,利用切線的性質得到OCPC,再由BDPD,得到一對直角相等,利用同位角相等兩直線平行得到OCBD平行,進而得到一對內(nèi)錯角相等,再由OB=OC,利用等邊對等角得到一對角相等,等量代換即可得證;

2)連接AC,由AB為⊙的直徑,利用圓周角定理得到ACB為直角,利用兩對角相等的三角形相似得到ABCCBD相似,利用相似三角形對應邊成比例,變形即可得證.

證明:()連接,

與圓相切,

,即,

,

,

,

,

,

,

;

)連接,

為圓的直徑,

,

,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】教練想從甲、乙兩名運動員中選拔一人參加射擊錦標賽,故先在射擊隊舉行了一場選拔比賽.在相同的條件下各射靶次,每次射靶的成績情況如圖所示.

甲射靶成績的條形統(tǒng)計圖

乙射靶成績的折線統(tǒng)計圖

)請你根據(jù)圖中的數(shù)據(jù)填寫下表:

平均數(shù)

眾數(shù)

方差

__________

__________

__________

)根據(jù)選拔賽結果,教練選擇了甲運動員參加射擊錦標賽,請給出解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程x2-x-m+1)=0有兩個不相等的實數(shù)根

1)求m的取值范圍;

2)若m為符合條件的最小整數(shù),求此方程的根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3BC=4M、N在對角線AC上,且AM=CN,E、F分別是AD、BC的中點.

1)求證:△ABM≌△CDN;

2)點G是對角線AC上的點,∠EGF=90°,求AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長分別為的兩個正方形并排放在一起,連結并延長交于點,交于點,則

A. B. 2 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,垂足為,直線上一動點(不與點重合),在的右側作,使得,連接

1)求證:

2)當在線段上時

求證:;

,

3)當CEAB時,若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,∠1=∠ACB,∠2=∠3,FHABH,求證:CDAB.請將下面的推理過程補充完整.

證明:FHAB(已知)

∴∠BHF=   °.(   

∵∠1=∠ACB(已知)

DEBC   

∴∠2=   .(   

∵∠2=∠3(已知)

∴∠3=   .(   

CDFH   

∴∠BDC=∠BHF=   °.(   

CDAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,EBC的中點,連接AE并延長交DC的延長線于點F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD 中,點E,O,F分別是邊ABAC,AD的中點,連接CE、CFOE、OF.當ABBC滿足___________條件時,四邊形AEOF正方形.

查看答案和解析>>

同步練習冊答案