【題目】某校八年級(jí)兩個(gè)班,各選派10名學(xué)生參加學(xué)校舉行的“建模”大賽預(yù)賽,各參賽選手的成績?nèi)缦拢?/span>

八(1)班:88,91,92,93,9393,94,98,98100;

八(2)班:8993,9393,95,96,96,98,98,99.

通過整理,得到數(shù)據(jù)分析表如下:

班級(jí)

最高分

平均分

中位數(shù)

眾數(shù)

方差

八(1)班

100

93

93

12

八(2)班

99

95

8.4

1)直接寫出表中、的值為:_____,_____,_____;

2)依據(jù)數(shù)據(jù)分析表,有人說:“最高分在(1)班,(1)班的成績比(2)班好.”但也有人說(2)班的成績要好.請(qǐng)給出兩條支持八(2)班成績好的理由;

3)學(xué)校從平均數(shù)、中位數(shù)、眾數(shù)、方差中選取確定了一個(gè)成績,等于或大于這個(gè)成績的學(xué)生被評(píng)定為“優(yōu)秀”等級(jí),如果八(2)班有一半的學(xué)生能夠達(dá)到“優(yōu)秀”等級(jí),認(rèn)為這個(gè)成績應(yīng)定為_____分.

【答案】194;95.593;(2)①八(2)班平均分高于八(1)班;②八(2)班的成績集中在中上游;③八(2)班的成績比八(1)班穩(wěn)定;故支持B班成績好;(395.5

【解析】

1)求出八(1)班的平均分確定出m的值,求出八(2)班的中位數(shù)確定出n的值,求出八(2)班的眾數(shù)確定出p的值即可;

2)分別從平均分,方差,以及中位數(shù)方面考慮,寫出支持八(2)班成績好的原因;

3)用中位數(shù)作為一個(gè)標(biāo)準(zhǔn)即可衡量是否有一半學(xué)生達(dá)到優(yōu)秀等級(jí).

1)八(1)班的平均分=

94

八(2)班的中位數(shù)為(9695)÷295.5,

八(2)班的眾數(shù)為93,

故答案為:94;95.5;93;

2)①八(2)班平均分高于八(1)班;②八(2)班的成績集中在中上游;③八(2)班的成績比八(1)班穩(wěn)定;故支持B班成績好;

3)如果八(2)班有一半的學(xué)生評(píng)定為“優(yōu)秀”等級(jí),標(biāo)準(zhǔn)成績應(yīng)定為95.5(中位數(shù)).

因?yàn)閺臉颖厩闆r看,成績?cè)?/span>95.5以上的在八(2)班有一半的學(xué)生.

可以估計(jì),如果標(biāo)準(zhǔn)成績定為95.5,八(2)班有一半的學(xué)生能夠評(píng)定為“優(yōu)秀”等級(jí),

故答案為95.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,邊上一點(diǎn),將沿翻折,點(diǎn)落在點(diǎn)處,當(dāng)為直角三角形時(shí),________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC 的一邊 AB x 軸上,∠ABC=90°,點(diǎn) C(4,8) 在第一象限內(nèi),AC y 軸交于點(diǎn) E,拋物線 y=+bx+c 經(jīng)過 A、B 兩點(diǎn),與 y 軸交于點(diǎn) D(0,﹣6).

(1)請(qǐng)直接寫出拋物線的表達(dá)式;

(2)求 ED 的長;

(3)若點(diǎn) M x 軸上一點(diǎn)(不與點(diǎn) A 重合),拋物線上是否存在點(diǎn) N,使∠CAN=∠MAN.若存在,請(qǐng)直接寫出點(diǎn) N 的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天,某同學(xué)早上8點(diǎn)坐車從余姚圖書館出發(fā)去寧波大學(xué),汽車離開余姚圖書館的距離(千米)與所用時(shí)間(分)之間的函數(shù)關(guān)系如圖所示.已知汽車在途中停車加油一次,則下列描述不正確的是(

A.汽車在途中加油用了10分鐘

B.,則加滿油以后的速度為80千米/小時(shí)

C.若汽車加油后的速度是90千米/小時(shí),則

D.該同學(xué)到達(dá)寧波大學(xué)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時(shí)BD=CF,BD⊥CF成立.

(1)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

(2)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長BD交CF于點(diǎn)G.

①求證:BD⊥CF;

②當(dāng)AB=4,AD=時(shí),求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABD、∠ACD的角平分線交于點(diǎn)P,若∠A=50°∠D=10°,則∠P的度數(shù)為(

A. 10°B. 15°C. 20°D. 25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線、相交于,∠EOC=90°的角平分線,,求的度數(shù).其中一種解題過程如下:請(qǐng)?jiān)诶ㄌ?hào)中注明根據(jù),在橫線上補(bǔ)全步驟.

解:∵

( )

的角平分線

( )

( )

( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為奇數(shù)排成的數(shù)表,用十字框任意框出個(gè)數(shù),記框內(nèi)中間這個(gè)數(shù)為,其它四個(gè)數(shù)分別記為,(如圖);圖為按某一規(guī)律排成的另一個(gè)數(shù)表,用十字框任意框出個(gè)數(shù),記框內(nèi)中間這個(gè)數(shù)為,其它四個(gè)數(shù)記為,(如圖).

1)請(qǐng)你含的代數(shù)式表示

2)請(qǐng)你含的代數(shù)式表示

3)若,,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案