【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)y=與y=(x>0,0<m<n)的圖象上,對(duì)角線BD∥y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.
(1)當(dāng)m=4,n=20時(shí).
①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.
②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
【答案】(1)①直線AB的解析式為y=﹣x+3;理由見解析;②四邊形ABCD是菱形,(2)四邊形ABCD能是正方形,理由見解析.
【解析】(1)①先確定出點(diǎn)A,B坐標(biāo),再利用待定系數(shù)法即可得出結(jié)論;
②先確定出點(diǎn)D坐標(biāo),進(jìn)而確定出點(diǎn)P坐標(biāo),進(jìn)而求出PA,PC,即可得出結(jié)論;
(2)先確定出B(4,),進(jìn)而得出A(4-t,+t),即:(4-t)(+t)=m,即可得出點(diǎn)D(4,8-),即可得出結(jié)論.
(1)①如圖1,
∵m=4,
∴反比例函數(shù)為y=,當(dāng)x=4時(shí),y=1,
∴B(4,1),
當(dāng)y=2時(shí),
∴2=,
∴x=2,
∴A(2,2),
設(shè)直線AB的解析式為y=kx+b,
∴,
∴,
∴直線AB的解析式為y=-x+3;
②四邊形ABCD是菱形,
理由如下:如圖2,
由①知,B(4,1),
∵BD∥y軸,
∴D(4,5),
∵點(diǎn)P是線段BD的中點(diǎn),
∴P(4,3),
當(dāng)y=3時(shí),由y=得,x=,
由y=得,x=,
∴PA=4-=,PC=-4=,
∴PA=PC,
∵PB=PD,
∴四邊形ABCD為平行四邊形,
∵BD⊥AC,
∴四邊形ABCD是菱形;
(2)四邊形ABCD能是正方形,
理由:當(dāng)四邊形ABCD是正方形,
∴PA=PB=PC=PD,(設(shè)為t,t≠0),
當(dāng)x=4時(shí),y==,
∴B(4,),
∴A(4-t,+t),
∴(4-t)(+t)=m,
∴t=4-,
∴點(diǎn)D的縱坐標(biāo)為+2t=+2(4-)=8-,
∴D(4,8-),
∴4(8-)=n,
∴m+n=32.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長(zhǎng)度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(5,3),B(6,5),C(4,6).
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo).
(2)將△A1B1C1向左平移6個(gè)單位,再向上平移5個(gè)單位,畫出平移后得到的△A2B2C2,并寫出點(diǎn)B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商場(chǎng)銷售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下.若每千克漲價(jià)1元,日銷售量將減少20千克.
(1)現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
(2)每千克水果漲價(jià)多少元時(shí),商場(chǎng)每天獲得的利潤(rùn)最大?獲得的最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:AB為⊙O的直徑,C是⊙O上一點(diǎn),如圖,AB=12,BC=4.BH與⊙O相切于點(diǎn)B,過點(diǎn)C作BH的平行線交AB于點(diǎn)E.
(1)求CE的長(zhǎng);
(2)延長(zhǎng)CE到F,使EF=,連接BF并延長(zhǎng)BF交⊙O于點(diǎn)G,求BG的長(zhǎng);
(3)在(2)的條件下,連接GC并延長(zhǎng)GC交BH于點(diǎn)D,求證:BD=BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次列車現(xiàn)階段的平均速度是千米/小時(shí),未來(lái)還將提速,在相同的時(shí)間內(nèi),列車現(xiàn)階段行駛千米,提速后列車比現(xiàn)階段多行駛千米.
(1)求列車平均提速多少千米/小時(shí)?
(2)若提速后列車的平均速度是千米/小時(shí),則題中的為多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①所示是邊長(zhǎng)為的大正方形中有一個(gè)邊長(zhǎng)為的小正方形.圖②是由圖①中陰影部分拼成的一個(gè)長(zhǎng)方形.
(1)設(shè)圖①中陰影部分的面積為,圖②中陰影部分的面積為,請(qǐng)用含的式子表示: , ;(不必化簡(jiǎn))
(2)以上結(jié)果可以驗(yàn)證的乘法公式是 ;
(3)利用(2)中得到的公式,計(jì)算:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一定能確定△ABC≌△DEF的條件是( )
A.AB=DE,BC=EF,∠A=∠DB.∠A=∠E,AB=EF,∠B=∠D
C.∠A=∠D,AB=DE,∠B=∠ED.∠A=∠D,∠B=∠E,∠C=∠F
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某批發(fā)市場(chǎng)批發(fā)甲、乙兩種水果,根據(jù)以往經(jīng)驗(yàn)和市場(chǎng)行情,預(yù)計(jì)夏季某一段時(shí)間內(nèi),甲種水果的銷售利潤(rùn)(萬(wàn)元)與進(jìn)貨量(噸)近似滿足函數(shù)關(guān)系;乙種水果的銷售利潤(rùn)(萬(wàn)元)與進(jìn)貨量(噸)近似滿足函數(shù)關(guān)系(其中,,為常數(shù)),且進(jìn)貨量為噸時(shí),銷售利潤(rùn)為萬(wàn)元;進(jìn)貨量為噸時(shí),銷售利潤(rùn)為萬(wàn)元.
求(萬(wàn)元)與(噸)之間的函數(shù)關(guān)系式.
如果市場(chǎng)準(zhǔn)備進(jìn)甲、乙兩種水果共噸,設(shè)乙種水果的進(jìn)貨量為噸,請(qǐng)你寫出這兩種水果所獲得的銷售利潤(rùn)之和(萬(wàn)元)與(噸)之間的函數(shù)關(guān)系式.并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷售利潤(rùn)之和最大,最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com