【題目】解下列方程.
(1)x2﹣6x=16
(2)(2x+3)2=9
(3)3x2﹣2x﹣1=0
(4)x(2x﹣3)=4x﹣6
【答案】(1)x1=8,x2=﹣2;(2)x1=0,x2=﹣3;(3)x1=﹣,x2=1;(3)x1=,x2=2
【解析】
(1)移項,利用因式分解法求解即可;
(2)利用直接開平方法求解;
(3)利用因式分解法求解;
(4)整理后,利用因式分解法計算.
(1)x2﹣6x=16,
x2﹣6x﹣16=0
(x﹣8)(x+2)=0,
∴x﹣8=0或x+2=0,
∴x1=8,x2=﹣2;
(2)(2x+3)2=9,
2x+3=±3,
∴x1=0,x2=﹣3;
(3)3x2﹣2x﹣1=0
(3x+1)(x﹣1)=0,
∴3x+1=0或x﹣1=0,
∴x1=﹣,x2=1;
(4)x(2x﹣3)=4x﹣6
x(2x﹣3)-2(2x﹣3)=0
(2x﹣3)(x﹣2)=0,
∴2x﹣3=0或x﹣2=0,
∴x1=,x2=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,點C在優(yōu)弧上,將弧沿BC折疊后剛好經(jīng)過AB的中點D.若⊙O的半徑為,AB=4,則BC的長是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在OA邊上的點E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標系.
(1)求點E坐標及經(jīng)過O,D,C三點的拋物線的解析式;
(2)一動點P從點C出發(fā),沿CB以每秒2個單位長的速度向點B運動,同時動點Q從E點出發(fā),沿EC以每秒1個單位長的速度向點C運動,當點P到達點B時,兩點同時停止運動.設(shè)運動時間為t秒,當t為何值時,DP=DQ;
(3)若點N在(2)中的拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使得以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請求出M點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,一次函數(shù)y=x﹣1的圖象與x軸,y軸分別交于點A,B,與反比例函數(shù)y=的圖象交于點C,D,CE⊥x軸于點E,.
(1)求反比例函數(shù)的表達式與點D的坐標;
(2)以CE為邊作ECMN,點M在一次函數(shù)y=x﹣1的圖象上,設(shè)點M的橫坐標為a,當邊MN與反比例函數(shù)y=的圖象有公共點時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)有兩條相交線段MN,EF,M,N,E,F分別在邊AB,CD,AD,BC上.小明認為:若MN=EF,則MN⊥EF;小亮認為:若MN⊥EF,則MN=EF.你認為( )
A. 僅小明對 B. 僅小亮對 C. 兩人都對 D. 兩人都不對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B是函數(shù)圖象上關(guān)于原點對稱的兩點,且BC//x軸,AC//y軸,△ABC的面積記為S,則( )
A.S=2B.S=4C.S=8D.S=1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA是⊙O的切線,切點為A,AC是⊙O的直徑,連接OP交⊙O于E.過A點作AB⊥PO于點D,交⊙O于B,連接BC,PB.
(1)求證:PB是⊙O的切線;
(2)求證:E為△PAB的內(nèi)心;
(3)若cos∠PAB=,BC=1,求PO的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com