【題目】已知:在△ABC中,∠A,∠B,∠C的對邊分別是a,b,c,三邊分別為下列長度,判斷該三角形是不是直角三角形,并指出哪一個角是直角.
(1)a=,b=2,c=;
(2)a=5,b=7,c=9;
(3)a=2,b=,c=;
(4)a=5,b=2,c=1.
【答案】(1)是,∠B是直角.(2)不是.(3)是,∠C是直角.(4)是,∠A是直角.
【解析】試題分析:(1)(2)(3)(4)首先求得每條邊的長的平方,判斷是否滿足兩個的和等于第三邊的和即可判斷.
試題解析:(1)∵a=,b=2,c=,
∴a2=3,b2=8,c2=5,
∵3+5=8,
∴a2+c2=b2,
∴△ABC是直角三角形,∠B=90°;
(2)∵a=5,b=7,c=9,
∴a2=25,b2=49,c2=81.
∵25+49=74≠81,
∴此三角形不是直角三角形;
(3)∵a=2,b=,c=,
∴a2=4,b2=3,c2=7.
∵4+3=7,
∴a2+b2=c2,
∴△ABC是直角三角形,∠C=90°;
(4)∵a=5,b=2,c=1,
∴a2=25,b2=24,c2=1.
∵24+1=25,
∴b2+c2=a2,
∴△ABC是直角三角形,∠A=90°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一個四邊形紙片 ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點 B 落在 AD 邊上的 B′點,AE 是折痕.
(1)試判斷 B′E 與 DC 的位置關系,并說明理由;
(2)如果∠C=128°,求∠AEB 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】海靜中學開展以“我最喜愛的職業(yè)”為主題的調查活動,圍繞“在演員、教師、醫(yī)生、律師、公務員共五類職業(yè)中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內隨機抽取部分學生進行問卷調查,將調查結果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據圖中提供的信息回答下列問題:
(1)本次調查共抽取了多少名學生?
(2)求在被調查的學生中,最喜愛教師職業(yè)的人數(shù),并補全條形統(tǒng)計圖;
(3)若海靜中學共有1500名學生,請你估計該中學最喜愛律師職業(yè)的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工程限期完成,甲隊單獨做正好按期完成,乙隊單獨做則要延期3天完成.現(xiàn)兩隊先合作2天,再由乙隊單獨做,也正好按期完成.如果設規(guī)定的期限為x天,那么根據題意可列出方程: =1; 2=1;③=1;④.其中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩同學同時從山腳開始爬山,到達山頂后立即下山,在山腳和山頂之間不斷往返運動,已知山坡長為360m,甲、乙上山的速度比是6:4,并且甲、乙下山的速度都是各自上山速度的1.5倍,當甲第三次到達山頂時,則此時乙所在的位置是。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,BC=2AB=4,點E、F分別是BC、AD的中點.
(1)求證:△ABE≌△CDF;
(2)當四邊形AECF為菱形時,求出該菱形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,∠ABD和∠BDC的平分線相交于點E,BE交CD于點F, ∠1+∠2=90°.
(1)AB與CD平行嗎?試說明理由.
(2)試探究∠2與∠3的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分9分)如圖,四邊形ABCD中AB∥CD,AB≠CD,BD=AC。
(1)求證:AD=BC;
(2)若E,F,G,H分別是AB,CD,AC,BD的中點,求證:線段EF與線段GH互相垂直平分。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等邊△ABC中,點H在邊BC上,點K在邊AC上,且滿足AK=HC,連接AH、BK交于點F.
(1)如圖1,求∠AFB的度數(shù);
(2)如圖2,連接FC,若∠BFC=90°,點G為邊 AC上一點,且滿足∠GFC=30°,求證:AG⊥BG
(3)如圖3,在(2)條件下,在BF上取D使得DF=AF,連接CD交AH于E,若△DEF面積為1, 則△AHC的面積為
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com