【題目】如圖,D是等邊△ABC的AB邊上的一動點(不與端點A、B重合),以CD為一邊向上作等邊△EDC,連接AE.
(1)無論D點運動到什么位置,圖中總有一對全等的三角形,請找出這一對三角形,并證明你得出的結(jié)論;
(2)D點在運動過程中,直線AE與BC始終保持怎樣的位置關(guān)系?并說明理由.
【答案】(1)△BDC≌△AEC,理由見解析;(2)AE//BC,理由見解析
【解析】
(1)根據(jù)等邊三角形的性質(zhì)可得∠BCA=∠DCE=60°,BC=AC,DC=EC,然后根據(jù)等式的基本性質(zhì)可得∠BCD=∠ACE,再利用SAS即可證出結(jié)論;
(2)根據(jù)全等三角形的性質(zhì)和等邊三角形的性質(zhì)可得∠DBC=∠EAC=60°,∠ACB=60°,然后利用平行線的判定即可得出結(jié)論.
(1)△BDC≌△AEC
理由如下:∵△ABC和△EDC都是等邊三角形,
∴∠BCA=∠DCE=60°,BC=AC,DC=EC.
∴∠BCA-∠ACD=∠DCE-∠ACD
∴∠BCD=∠ACE
在△BDC和△AEC中
∴△BDC≌△AEC
(2)AE//BC
理由如下:∵△BDC≌△AEC,△ABC是等邊三角形
∴∠DBC=∠EAC=60°,∠ACB=60°
∴∠EAC=∠ACB
故AE//BC
科目:初中數(shù)學 來源: 題型:
【題目】四邊形 OABC 在圖 1 中的直角坐標系中,且OC在 y 軸上,OA∥BC,A、B兩點的坐標分別為 A(18,0),B(12,8),動點 P、Q分別從 O、B兩點出發(fā),點 P以每秒2個單位的速度沿 OA 向終點 A 運動,點 Q 以每秒1個單位的速度沿BC向 C運動,當點 P停止運動時,點 Q 同時停止運動.動點 P、Q 運動時間為 t(單位:秒).
(1)當 t 為何值時,四邊形 PABQ 是平行四邊形,請寫出推理過程;
(2)如圖 2,線段 OB、PQ 相交于點 D,過點 D 作 DE∥OA,交 AB 于點 E,射線 QE 交 x 軸于點 F,PF=AO.當 t 為何值時,△PQF 是等腰三角形?請寫出推理過程;
(3)如圖 3,過 B 作 BG⊥OA 于點 G,過點 A 作 AT⊥x 軸于點 A,延長 CB 交 AT于點 T.將點 G 折疊,折痕交邊 AG、BG 于點 M、N,使得點 G 折疊后落在AT 邊上的點為 G′,求 AG′的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2015山東省德州市,24,12分)已知拋物線y=-mx2+4x+2m與x軸交于點A(α,0), B(β,0),且.
(1)求拋物線的解析式.
(2)拋物線的對稱軸為l,與y軸的交點為C,頂點為D,點C關(guān)于l的對稱點為E.是否存在x軸上的點M、y軸上的點N,使四邊形DNME的周長最?若存在,請畫出圖形(保留作圖痕跡),并求出周長的最小值;若不存在,請說明理由.
(3)若點P在拋物線上,點Q在x軸上,當以點D、E、P、Q為頂點的四邊形是平行四邊形時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,運載火箭從地面L處垂直向上發(fā)射,當火箭到達A點時,從位于地面R處的雷達測得AR的距離是40km,仰角是30°,n秒后,火箭到達B點,此時仰角是45°,則火箭在這n秒中上升的高度是_____km.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示OA、BA分別表示甲、乙兩名學生在同一直線上沿相同方向的運動過程中,路程S(米)與時間t(秒)的函數(shù)關(guān)系圖象,試根據(jù)圖象回答下列問題.
(1)出發(fā)時,乙在甲前面多少米處?
(2)在什么時間范圍內(nèi)甲走在乙的后面?在什么時間他們相遇?在什么時間內(nèi)甲走在乙的前面?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖以正方形ABCD的B點為坐標原點.BC所在直線為x軸,BA所在直線為y軸,建立直角坐標系.設正方形ABCD的邊長為6,順次連接OA、OB、OC、OD的中點A1、B1、C1、D1,得到正方形A1B1C1D1,再順次連接OA1、OB1、OC1、OD1的中點得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n為不小于1的自然數(shù)),設An點的坐標為(xn,yn),則xn+yn=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在線段BD上,在BD的同側(cè)作等腰和等腰,其中,CD與BE、AE分別交于點P、對于下列結(jié)論:
∽;;;.
其中正確的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB、CD 分別為兩圓的弦,AC、BD 為兩圓的公切線且相交于點 P.若 PC=2,DB=6,∠APB=90°.
(1)求△PAB 的周長.
(2)求△PAB 與△PCD 的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點的坐標為(,1),下列結(jié)論:①c>0;②b2﹣4ac>0;③a+b=0;④4ac﹣b2>4a,其中錯誤的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com