(2013•遵義)如圖,已知直線y=
1
2
x與雙曲線y=
k
x
(k>0)交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(-4,-2),C為雙曲線y=
k
x
(k>0)上一點(diǎn),且在第一象限內(nèi),若△AOC的面積為6,則點(diǎn)C的坐標(biāo)為
(2,4)或(8,1)
(2,4)或(8,1)
分析:把點(diǎn)B的坐標(biāo)代入反比例函數(shù)解析式求出k值,再根據(jù)反比例函數(shù)圖象的中心對稱性求出點(diǎn)A的坐標(biāo),然后過點(diǎn)A作AE⊥x軸于E,過點(diǎn)C作CF⊥x軸于F,設(shè)點(diǎn)C的坐標(biāo)為(a,
8
a
),然后根據(jù)S△AOC=S△COF+S梯形ACFE-S△AOE列出方程求解即可得到a的值,從而得解.
解答:解:∵點(diǎn)B(-4,-2)在雙曲線y=
k
x
上,
k
-4
=-2,
∴k=8,
根據(jù)中心對稱性,點(diǎn)A、B關(guān)于原點(diǎn)對稱,
所以,A(4,2),
如圖,過點(diǎn)A作AE⊥x軸于E,過點(diǎn)C作CF⊥x軸于F,設(shè)點(diǎn)C的坐標(biāo)為(a,
8
a
),
若S△AOC=S△COF+S梯形ACFE-S△AOE
=
1
2
×8+
1
2
×(2+
8
a
)(4-a)-
1
2
×8,
=4+
16-a2
a
-4,
=
16-a2
a
,
∵△AOC的面積為6,
16-a2
a
=6,
整理得,a2+6a-16=0,
解得a1=2,a2=-8(舍去),
8
a
=
8
2
=4,
∴點(diǎn)C的坐標(biāo)為(2,4).
若S△AOC=S△AOE+S梯形ACFE-S△COF=
a2-16
a

a2-16
a
=6,
解得:a=8或a=-2(舍去)
∴點(diǎn)C的坐標(biāo)為(8,1).
故答案為:(2,4)或(8,1).
點(diǎn)評:本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,反比例函數(shù)系數(shù)的幾何意義,作輔助線并表示出△ABC的面積是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遵義)如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動(dòng)點(diǎn)M,N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A,B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),以A,P,M為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遵義)如圖,直線l1∥l2,若∠1=140°,∠2=70°,則∠3的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遵義)如圖,在4×4正方形網(wǎng)格中,任選取一個(gè)白色的小正方形并涂紅,使圖中紅色部分的圖形構(gòu)成一個(gè)軸對稱圖形的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遵義)如圖,將一張矩形紙片ABCD沿直線MN折疊,使點(diǎn)C落在點(diǎn)A處,點(diǎn)D落在點(diǎn)E處,直線MN交BC于點(diǎn)M,交AD于點(diǎn)N.
(1)求證:CM=CN;
(2)若△CMN的面積與△CDN的面積比為3:1,求
MNDN
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,-
23
),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).
(1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點(diǎn)P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,請說明理由;
(3)以AB為直徑的⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.

查看答案和解析>>

同步練習(xí)冊答案