【題目】某服裝店以每件40元的價格購進一批襯衫,在試銷過程中發(fā)現(xiàn):每月銷售量y(件)與銷售單價x(x為正整數(shù))(元)之間符合一次函數(shù)關系,當銷售單價為55元時,月銷售量為140件;當銷售單價
為70元時,月銷售量為80件.
(1)求y與x的函數(shù)關系式;
(2)如果每銷售一件襯衫需支出各種費用1元,設服裝店每月銷售該種襯衫獲利為w元,求w與x之間的函數(shù)關系式,并求出銷售單價定為多少元時,商場獲利最大,最大利潤是多少元?
【答案】(1)y=﹣4x+360(2)x=65或66時,W最大=2400元
【解析】
(1)設y與x的函數(shù)關系式y(tǒng)=kx+b,根據(jù)售價與銷量之間的數(shù)量關系建立方程組,求出其解即可。
(2)根據(jù)利潤=(售價﹣進價)×數(shù)量就可以表示出W,根據(jù)二次函數(shù)的性質(zhì)求出最值
解:(1)設y與x的函數(shù)關系式y(tǒng)=kx+b,由題意,得
,解得:。
∴y與x的函數(shù)關系式為:y=﹣4x+360
(2)由題意,得
W=y(x﹣40)﹣y=(﹣4x+360)(x﹣40)﹣(﹣4x+360)=﹣4x2+160x+360x﹣14400+4x﹣360
=﹣4x2+524x﹣14760,
∴w與x之間的函數(shù)關系式為:W=﹣4x2+524x﹣14760。
∵W=﹣4(x2﹣131x)﹣14760=﹣4(x﹣65.5)2+2401,
當x=65.5時,最大利潤為2401元。
∵x為整數(shù),∴x=66或65時,W=2400元。
∴x=65或66時,W最大=2400元
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點M,BE丄CD于點E.
(1)求證:∠BME=∠MAB;
(2)求證:BM2=BEAB;
(3)若BE=,sin∠BAM=,求線段AM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形中,,,點、分別為、的兩點.
(1)如圖1,若,且,連接、,判斷和的數(shù)量關系及位置關系,并說明理由;
(2)如圖2,,求證:;
(3)如圖3,若,點關于的對稱點為點,點為平行四邊形對角線的中點,連接交于點,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關系?請說明理由;
(3)設AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們將使得函數(shù)值為零的自變量的值稱為函數(shù)的零點值,此時的點稱為函數(shù)的零點.例如,對于函數(shù),令,可得,我們就說1是函數(shù)的零點值,點是函數(shù)的零點.
已知二次函數(shù).
(1)若函數(shù)有兩個不重合的零點時,求k的取值范圍;
(2)若函數(shù)的兩個零點都是整數(shù)點,求整數(shù)k的值;
(3)當k<0時,在(2)的條件下,函數(shù)的兩個零點分別是點A,B(點A在點B的左側(cè)),將二次函數(shù)的圖象在點A,B間的部分(含點A和點B)向左平移個單位后得到的圖象記為,同時將直線向上平移個單位.請結(jié)合圖象回答:當平移后的直線與圖象有公共點時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時間x(分)之間的關系如圖所示.
(1)甲的速度為 千米/分,甲乙相遇時,乙走了 分鐘.乙的速度為 千米/分.
(2)求從乙出發(fā)到甲乙相遇時,y與x的函數(shù)關系式.
(3)乙到達A地時,甲還需 分鐘到達終B地.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,BC=8,∠B=60,過平行四邊形的對稱中心點O的一條直線與邊AD、BC分別交于點E、F,設直線EF與BC的夾角為α。
(1)當α的度數(shù)是_________時,四邊形AFCE為菱形;
(2)當α的度數(shù)是_________時,四邊形AFCE為矩形;
(3)四邊形AFCE能否為正方形?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校組織團員舉行申奧成功宣傳活動,從學校騎車出發(fā),先上坡到達A地后,宣傳8分鐘;然后下坡到B地宣傳8分鐘返回,行程情況如圖.若返回時,上、下坡速度仍保持不變,在A地仍要宣傳8分鐘,那么他們從B地返回學校用的時間是( )
A. 45.2分鐘 B. 48分鐘 C. 46分鐘 D. 33分鐘
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,海面上B,C兩島分別位于A島的正東和正北方向.一艘船從A島出發(fā),以18海里/時的速度向正北方向航行2小時到達C島,此時測得B島在C島的南偏東43°.求A,B兩島之間的距離.(結(jié)果精確到0.1海里)(參考數(shù)據(jù):sin43°=0.68,cos43°=0.73,tan43°=0.93)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com