如圖,AB為半圓O的直徑,OC⊥AB交⊙O于C,P為BC延長(zhǎng)線上一動(dòng)點(diǎn),D為AP中點(diǎn),DE⊥PA,交半徑OC于E,連CD.下列結(jié)論:①PE⊥AE;②DC=DE;③∠OEA=∠APB;④PC+數(shù)學(xué)公式CE為定值.其中正確結(jié)論的個(gè)數(shù)為


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
D
分析:①根據(jù)三角形外心的定義得到點(diǎn)E是△ABP的外心,然后利用同弧所對(duì)的圓周角等于所對(duì)圓心角的一半可以證明PE⊥AE.②根據(jù)直徑所對(duì)的圓周角是直角以及①的結(jié)論,可以知道點(diǎn)C和點(diǎn)E在以點(diǎn)D為圓心的同一個(gè)圓上,得到DC=DE.③根據(jù)垂徑定理得到∠AEO=∠AEB,然后用圓周角定理得到∠APB=∠AEO.④利用③的結(jié)論,結(jié)合圖形,在直角三角形中用余弦進(jìn)行計(jì)算得到PC+CE=OC,是圓的半徑的倍,是一個(gè)定值.
解答:解:①如圖:∵點(diǎn)D是AP的中點(diǎn),且DE⊥AP,∴DE是AP的垂直平分線,
又AB是半⊙O的直徑,OC⊥AB,∴OC是AB的垂直平分線,
∴點(diǎn)E是△ABP的外心,
∵∠ABC=45°,∴∠AEP=90°(同弧所對(duì)的圓周角等于它所對(duì)圓心角的一半)
∴PE⊥AE,故①正確.
②∵AB是半⊙O的直徑,∴∠ACB=90°=∠ACP=∠AEP,
∴點(diǎn)C和點(diǎn)E在以點(diǎn)D為圓心的同一個(gè)圓上,∴DC=DE,故②正確.
③由①知點(diǎn)E是△ABP的外心,∴∠APB=∠AEB=∠AEO,故③正確.
④在直角△APC中,PC=AP•cos∠APC=AE•cos∠AE0=AE•=OE,
∴PC+CE=OE+CE=(OE+CE)=OC,
∴PC+CE為定值,是⊙O半徑的倍.故④正確.
故選D.
點(diǎn)評(píng):本題考查的是圓周角定理的綜合運(yùn)用,結(jié)合圖形,利用圓周角定理,對(duì)每個(gè)選項(xiàng)進(jìn)行分析,作出正確的判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,AB為半圓⊙O的直徑,C為半圓上的一點(diǎn).
(1)請(qǐng)你只用直尺和圓規(guī),分別以AC、BC為直徑,向△ABC外側(cè)作半圓.(不必寫(xiě)出作法,只需保留作圖痕跡)
(2)若AC=3,BC=4,求所作的兩個(gè)半圓中不與⊙O重疊的部分的面積和.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀理解:對(duì)于任意正實(shí)數(shù)a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有點(diǎn)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問(wèn)題:
(1)若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 
;
(2)思考驗(yàn)證:如圖,AB為半圓O的直徑,C為半圓上任意一點(diǎn),(與點(diǎn)A,B不重合).過(guò)點(diǎn)C作CD⊥AB,垂足精英家教網(wǎng)為D,AD=a,DB=b.
試根據(jù)圖形驗(yàn)證a+b≥2
ab
,并指出等號(hào)成立時(shí)的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB為半圓O的直徑,CB切半圓于點(diǎn)B,AC交半圓于點(diǎn)D,若CD=1,AD=3,則⊙O半徑的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為半圓O的直徑,D、E是半圓上的兩點(diǎn),且BD平分∠ABE,過(guò)點(diǎn)D作BE延長(zhǎng)線的垂線,垂足為精英家教網(wǎng)C,直線CD交BA的延長(zhǎng)線于點(diǎn)F.
(1)求證:直線CD是半圓O的切線;
(2)若FA=2,OA=3,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB為半圓O的直徑,B1,B2,…,Bk是半圓上的k個(gè)點(diǎn),滿足BB1=B1B2=…Bk-1Bk,對(duì)于線段OB1,OB2,…,OBk,AB1,AB2,…,ABk,當(dāng)k=4時(shí),有
 
對(duì)互相平行的線段;當(dāng)k取任意大于1的整數(shù)時(shí),試探索這2k條線段中有多少對(duì)互相平行的線段,寫(xiě)出你的結(jié)論:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案