【題目】如圖,在△ABE中,C,D是邊BE上的兩點,有下面四個關系式:(1AB=AE,(2BC=DE,(3AC=AD,(4)∠BAC=∠EAD.請用其中兩個作為已知條件,余下兩個作為求證的結論,寫出你的已知和求證,并證明.

已知:

求證:

證明:

【答案】見解析

【解析】

已知:AB=AE,BC=DE,求證:AC=AD,∠BAC=∠EAD;由“SAS”可證△ABC≌△AED,可得AC=AD,∠BAC=∠EAD

已知:AB=AE,BC=DE

求證:AC=AD,∠BAC=∠EAD

證明:∵AB=AE,

∴∠B=∠E,

AB=AE,∠B=∠E,BC=DE

∴△ABC≌△AEDSAS),

AC=AD,∠BAC=∠EAD;

也可以(1)(32)(4)或(2)(31)(4)或(1)(42)(3)或(3)(41)(2).證明方法類似.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點AB,C是半徑為2⊙O上三個點,AB為直徑,∠BAC的平分線交圓于點D,過點DAC的垂線交AC得延長線于點E,延長線EDAB得延長線于點F

1)判斷直線EF⊙O的位置關系,并證明.

2)若DF=,求tan∠EAD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,將繞點旋轉得到,使點的對應點落在上,在上取點,使,那么點的距離等于( ).

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】昌云中學計劃為地理興趣小組購買大、小兩種地球儀,若購買1個大地球儀和3個小地球儀需要136元;若購買2個大地球儀和1個小地球儀需要132元.

1)求每個大地球儀和每個小地球儀各多少元;

2)昌云中學決定購買以上兩種地球儀共30個,總費用不超過960元,那么昌云中學最多可以購買多少個大地球儀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A,B兩點.且點A的坐標為

1)求該一次函數(shù)的解析式;

2)求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D是射線BC上的一定點,點P是線段AB上一動點,連接PD,作BQ垂直PD,交直線PD于點Q.小騰根據(jù)學習函數(shù)的經(jīng)驗,對線段PB,PD,BQ的長度之間的關系進行了探究.下面是小騰的探究過程,請補充完整:

1)對于點PAB上的不同位置,畫圖、測量,得到了線段PB,PD,BQ的長度的幾組值,如表:

位置1

位置2

位置3

位置4

位置5

位置6

位置7

BP/cm

0.00

1.00

2.00

3.00

4.00

5.00

6.00

PD/cm

2.00

1.22

0.98

1.56

2.43

3.38

4.35

BQ/cm

0.00

0.78

1.94

1.82

1.56

1.41

1.31

PBPD,BQ的長度這三個量中,確定   的長度是自變量,   的長度和   的長度都是這個自變量的函數(shù);

2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數(shù)的圖象;

3)結合函數(shù)圖象,解決問題:當PDBQ時,PB長度范圍是   cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,點A、B的坐標分別是A3,2)、B1,3).△AOB繞點O逆時針旋轉90°后得到△A1OB1

1)點A關于點O中心對稱的點的坐標為

2)點A1的坐標為 ;

3)在旋轉過程中,求線段AB掃過的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系Oxy中,四邊形OABC為矩形,點A、C分別在x軸、y軸上,點B在函數(shù),k為常數(shù)且)的圖象上,邊AB與函數(shù)的圖象交于點D,則陰影部分ODBC的面積為________(結果用含k的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形中,,是射線上一動點,以為邊向右側作等邊,點的位置隨點的位置變化而變化.

(1)如圖1,當點在菱形內部或邊上時,連接,的數(shù)量關系是 ,的位置關系是 ;

(2)當點在菱形外部時,(1)中的結論是否還成立?若成立,請予以證明;若不成立,

請說明理由(選擇圖2,圖3中的一種情況予以證明或說理).

(3) 如圖4,當點在線段的延長線上時,連接,若 , ,求四邊形的面積.

查看答案和解析>>

同步練習冊答案