【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點E,且BE∥AD,試求出∠C的度數(shù).
【答案】(1) 70°;(2) 60°.
【解析】試題分析:(1)根據(jù)四邊形的內(nèi)角和是360°進行求解即可;
(2)先根據(jù)平行線的性質(zhì)求出∠ABE和∠DEB的度數(shù),再由角平分線求出∠EBC的度數(shù),最后在△EBC中利用三角形的內(nèi)角和定理求出∠C即可.
試題解析:
(1)∵∠A+∠B+∠C+∠D=360°,∠B=∠C,
∴∠C==70°.
(2)∵BE∥AD,
∴∠BEC=∠D=80°,
∠ABE=180°-∠A=180°-140°=40°.
又∵BE平分∠ABC,
∴∠EBC=∠ABE=40°.
∴∠C=180°-∠EBC-∠BEC=60°.
科目:初中數(shù)學 來源: 題型:
【題目】下列長度的三根木棒首尾相接,不能做成三角形框架的是( )
A.5cm、7cm、2cm
B.7cm、13cm、10cm
C.5cm、7cm、11cm
D.5cm、10cm、13cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ACBE內(nèi)接于⊙O,AB平分∠CAE,CD⊥AB交AB、AE分別于點H、D.
(1)如圖①,求證:BD=BE;
(2)如圖②,若F是弧AC的中點,連接BF,交CD于點M,∠CMF=2∠CBF,連接FO、OC,求∠FOC的度數(shù);
(3)在(2)的條件下,連接OD,若BC=4 ,OD=7,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】;@球隊15名隊員的年齡如下表所示:
年齡(歲) | 12 | 13 | 14 | 15 | 16 |
人數(shù) | 1 | 2 | 5 | 4 | 3 |
則這15名籃球隊員年齡的眾數(shù)和中位數(shù)分別是( )
A.14,14.5B.14,15C.15,15D.14,14
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了打造區(qū)域中心城市,實現(xiàn)跨越式發(fā)展,我市新區(qū)建設(shè)正按投資計劃有序推進.新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關(guān)信息如表:
租金(單位:元/臺時) | 挖掘土石方量(單位:m3/臺時) | |
甲型挖掘機 | 100 | 60 |
乙型挖掘機 | 120 | 80 |
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有幾種不同的租用方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com