【題目】已知:如圖所示,在△ABC中,∠BAC=60°,AD=AE,BE、CD交于點F,且∠DFE=120°.在BE的延長線上截取ET=DC,連接AT.
(1)求證:∠ADC=∠AET;
(2)求證:AT=AC;
(3)設BC邊上的中線AP與BE交于Q.求證:∠QAB=∠QBA.
【答案】(1)見解析 (2)見解析 (3)見解析
【解析】
(1)根據已知條件求得∠AEF+∠ADC=180°,再根據∠AEF+∠AET=180°即可得∠ADC=∠AET;
(2)利用SAS可證△AET≌△ADC即可解答;
(3)延長AP至G點,使得GP=AP,連接BG.,再利用SAS可證△APC≌△GPB的性質證明出△ABG≌△BAT即可解答.
(1)∵∠BAC=60°,∠DFE=120°,
∴∠AEF+∠ADC=360°-60°-120°=180°.
∵∠AEF+∠AET=180°
∴∠ADC=∠AET.
(2)利用SAS可證△AET≌△ADC.
∴AT=AC.
(3)延長AP至G點,使得GP=AP,連接BG.
利用SAS可證△APC≌△GPB.
∴AC=GB
由(2)可知AC=AT
∴GB=AT
由(2)可知∠TAC=∠CAD=60°
∴∠TAB=120°
又∵△APC≌△GPB,∴∠CAP=∠BGP,∴AC∥BG
∴∠ABG=180°-∠BAC=180°-60°=120°=∠TAB
利用SAS可證△ABG≌△BAT,
∴∠QAB=∠QBA.
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣ x+1與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經過A,B兩點.
(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的一點,連接PA、PB、PO,若△POA的面積是△POB面積的 倍.
①求點P的坐標;
②點Q為拋物線對稱軸上一點,請直接寫出QP+QA的最小值;
(3)點M為直線AB上的動點,點N為拋物線上的動點,當以點O、B、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,∠A=70°,∠B=90°,點A關于BC的對稱點是A',點B關于AC的對稱點是B',點C關于AB的對稱點是C',若△ABC的面積是,則△A'B'C'的面積是_________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關部門決定降低坡度,使新坡面的坡度為1: .
(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是放在地面上的一個長方體盒子,其中AB=9cm,BC=6cm,BF=5cm,點M在棱AB上,且AM=3cm,點N是FG的中點,一只螞蟻要沿著長方體盒子的表面從點M爬行到點N,它需要爬行的最短路程為( )
A. 10cm B. C. D. 9cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調查(每位同學只選最關注的一個),根據調查結果繪制了兩幅不完整的統(tǒng)計圖.根據圖中提供的信息,解答下列問題:
(1)這次調查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數.
(3)如果要在這5個主題中任選兩個進行調查,根據(2)中調查結果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的兩外角平分線交于點P,易證∠P=90°- ∠A;△ABC的兩內角的平分線交于點Q,易證∠BQC=90°+∠A;那么△ABC的內角平分線BM與外角平分CM的夾角∠M=_____∠A.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,點E在對角線AC上,EC=BC=DC.
(1)若∠CBD=39°,求∠BAD的度數;
(2)求證:∠1=∠2.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com