【題目】如圖,矩形中,,.以每秒個單位的速度運動,以為一邊在的右下方作正方形.同時垂直于的直線以每秒個單位的速度運動,設運動時間為秒,當________.秒時,直線和正方形開始有公共點

【答案】2

【解析】

首先過點FFQCD于點Q,證明△ADE≌△EQF,進而得出AD=EQ,得出當直線MN和正方形AEFG開始有公共點時:DQ+CM9,進而求解即可.

解:過點FFQCD于點Q,則∠FQE=90,如圖所示:

∵四邊形ABCD為矩形,

∴∠D=90,

∴∠D=FQE,

∵在正方形AEFG,AEF=90,AE=EF,

∴∠AED+QEF=90,

∵∠DAE+AED=90

∴∠DAE=QEF,

ADEEQF中,

ADEEQF(AAS),

AD=EQ=3

當直線MN和正方形AEFG開始有公共點時:DQ+CM9,

設當經(jīng)過t秒時,直線MN和正方形AEFG開始有公共點,

t+3+2t9,

解得:t2

故答案為:2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

如圖12-1,過銳角ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫ABC水平寬”(a),中間的這條直線在ABC內(nèi)部線段的長度叫ABC鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:

如圖12-2,拋物線頂點坐標為點C(1,4),交x軸于點A,交y軸于點B(0,3).

(1)求拋物線解析式和線段AB的長度;

(2)P是拋物線(在第一象限內(nèi))上的一個動點,連結(jié)PA,PB,當P點運動到頂點C時,求CAB的鉛垂高CD;

(3)是否存在一點P,使SPAB=SCAB,若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某市民健身廣場的平面示意圖,它是由6個正方形拼成的長方形,已知中間最小的正方形的邊長是1米;

1)若設圖中最大正方形的邊長是米,請用含的代數(shù)式分別表示出正方形的邊長

2)觀察圖形的特點可知,長方形相對的兩邊是相等的(即, )請根據(jù)以上結(jié)論,求出的值

3)現(xiàn)沿著長方形廣場的四條邊鋪設下水管道,由甲、乙工程隊單獨鋪設分別需要10天、15天完成,如果兩隊從同一位置開始,沿相反的方向同時施工2天后,因甲隊另有任務,余下的工程由乙隊單獨施工,還要多少天完成?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,M、N分別是ABC的邊ACAB的中點,DBC上任意一點,連接AD,將AMN沿AD方向平移到A1M1N1的位置且M1N1BC邊上,已知AMN的面積為7,則圖中陰影部分的面積為( 。

A. 14 B. 21 C. 28 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E、F分別在邊BC,CD上,且BE=DF,點PAF的中點,點Q是直線ACEF的交點,連接PQ,PD.

(1)求證:AC垂直平分EF;

(2)試判斷PDQ的形狀,并加以證明;

(3)如圖2,若將CEF繞著點C旋轉(zhuǎn)180°,其余條件不變,則(2)中的結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的有( 。

a一定是負數(shù);

一定小于a;

互為相反數(shù)的兩個數(shù)的絕對值相等;

等式﹣a2|a2|一定成立;

大于﹣3且小于2的所有整數(shù)的和是2

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線的圖象交于點,直線與反比例函數(shù)的圖象交于、兩點.

1)直接寫出,,,的值;

2 在平面內(nèi),若以,,四點為頂點的四邊形是平行四邊形,求符合條件的所有點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了滿足學生的物質(zhì)需求,我市某中學到紅旗超市準備購進甲、乙兩種綠色袋裝食品.其中甲、乙兩種綠色袋裝食品的進價和售價如下表:

進價(元/袋)

售價(元/袋)

20

13

已知:用2000元購進甲種袋裝食品的數(shù)量與用1600元購進乙種袋裝食品的數(shù)量相同.

1)求的值;

2)要使購進的甲、乙兩種綠色袋裝食品共800袋的總利潤(利潤=售價-進價)不少于5200元,且不超5280元,問該紅旗超市有幾種進貨方案?

3)在(2)的條件下,該紅旗超市準備對甲種袋裝食品進行優(yōu)惠促銷活動,決定對甲種袋裝食品每袋優(yōu)惠元出售,乙種袋裝食品價格不變.那么該紅旗超市要獲得最大利潤應如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖在ABC ,ADE 中,BAC DAE 90AB AC ,AD AE ,點 C , D , E 三點在同一條直線上,連接 BD BE.求證:(1ABD≌△ACE ;(2 BD CE ;(3 BE AC AD

查看答案和解析>>

同步練習冊答案