【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫出自變量x的取值范圍)
(2)已知當(dāng)油箱中的剩余油量為8升時,該汽車會開始提示加油,求提示時汽車行駛的路程是多少千米.
【答案】(1)y=﹣0.1x+60;(2)520千米.
【解析】
(1)根據(jù)函數(shù)圖象中點的坐標(biāo)利用待定系數(shù)法求出一次函數(shù)解析式;
(2)根據(jù)一次函數(shù)圖象上點的坐標(biāo)特征即可求出剩余油量為8升時行駛的路程,此題得解.
解:(1)設(shè)該一次函數(shù)解析式為y=kx+b,
將(150,45)、(0,60)代入y=kx+b中,
,
解得:,
∴該一次函數(shù)解析式為y=﹣0.1x+60.
(2)當(dāng)y=﹣0.1x+60=8時,x=520,即行駛520千米時,油箱中的剩余油量為8升.
答:提示時汽車行駛的路程是520千米
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AB=6,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一動點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)證明:在運動過程中,點D是線段PQ的中點;
(2)當(dāng)∠BQD=30°時,求AP的長;
(3)在運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,對于任意兩點A (a,b),B(c,d),若點T(x,y)滿足x=,y=,那么稱點T是點A和B的融合點.例如:M(﹣1,8),N(4,﹣2),則點T(1,2)是點M和N的融合點.如圖,已知點D(3,0),點E是直線y=x+2上任意一點,點T (x,y)是點D和E的融合點.
(1)若點E的縱坐標(biāo)是6,則點T的坐標(biāo)為 ;
(2)求點T (x,y)的縱坐標(biāo)y與橫坐標(biāo)x的函數(shù)關(guān)系式:
(3)若直線ET交x軸于點H,當(dāng)△DTH為直角三角形時,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“黃金1號”玉米種子的價格為5元/kg.如果一次購買5kg以上的種子,超過5kg部分的種子價格打8折.
(1)購買3kg種子,需付款 元,購買6kg種子,需付款 元.
(2)設(shè)購買種子x kg,付款金額為y元,寫出y與x之間的函數(shù)解析式.
(3)張大爺要購買種子5千克,李大爺要購買種子4千克,怎樣購買讓他們花錢最少?他們各應(yīng)付款多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家出發(fā),外出散步,到一個公共閱報欄前看了一會報后,繼續(xù)散步了一段時間,然后回家,如圖描述了小明在散步過程匯總離家的距離s(米)與散步所用時間t(分)之間的函數(shù)關(guān)系,根據(jù)圖象,下列信息錯誤的是( )
A.小明看報用時8分鐘
B.公共閱報欄距小明家200米
C.小明離家最遠的距離為400米
D.小明從出發(fā)到回家共用時16分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AB>BC,AB=AC,DE 是 AB 的垂直平分線,垂足為 D,交 AC 于 E.
(1)若∠ABE=40°,求∠EBC 的度數(shù);
(2)若△ABC 的周長為 41cm,一邊長為 15cm,求△BCE 的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點,且DE=DF,連接BF、CE,且∠FBD=35°,∠BDF=75°,下列說法:①△BDF≌CDE;②ABD和△ACD面積相等;③BF∥CE;④∠DEC=70°,其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點O為原點,點A的坐標(biāo)為(0,8),點C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.
(1)求拋物線的函數(shù)解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達式;
②當(dāng)S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com