【題目】小麗和小明上山游玩,小麗乘纜車,小明步行,兩人相約在山頂?shù)睦|車終點會合.已知小明行走到纜車終點的路程是纜車到山頂?shù)木路長的2倍,小麗在小明出發(fā)后1小時才乘上纜車,纜車的平均速度為190m/min.設(shè)小明出發(fā)x min后行走的路程為y m.圖中的折線表示小明在整個行走過程中y與x的函數(shù)關(guān)系.
(1)小明行走的總路程是m,他途中休息了min.
(2)①當(dāng)60≤x≤90時,求y與x的函數(shù)關(guān)系式;②當(dāng)小麗到達(dá)纜車終點時,小明離纜車終點的路程是多少?
【答案】
(1)3800,30
(2)解:①設(shè)當(dāng)60≤x≤90時,y與x的函數(shù)關(guān)系式為y=kx+b,
∵圖象過點(60,2000),(90,3800),
∴ ,
解得 ,
∴y=60x﹣1600;
②∵小明行走到纜車終點的路程是纜車到山頂?shù)木路長的2倍,小麗在小明出發(fā)后1小時才乘上纜車,纜車的平均速度為190m/min,
∴小麗行駛的路程為;3800÷2=1900m,行駛的時間為:1900÷190=10min.
∴小麗到達(dá)終點,小明行駛的時間為:60+10=70min.
∴將x=70代入y=60x﹣1600得,y=60×70﹣1600=2600.
∴小明離纜車終點的路程是:3800﹣2600=1200m.
答:小明離纜車終點的路程是1200m
【解析】解:(1)由函數(shù)圖象,得
小亮行走的總路程是3800米,途中休息了60﹣30=30分鐘.
所以答案是:3800,30;
【考點精析】本題主要考查了確定一次函數(shù)的表達(dá)式的相關(guān)知識點,需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道對于x軸上的任意兩點A(x1,0),B(x2,0),有AB=|x1﹣x2|,而對于平面直角坐標(biāo)系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|稱為Pl,P2兩點間的直角距離,記作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.
(1)已知O為坐標(biāo)原點,若點P坐標(biāo)為(1,3),則d(O,P)= ;
(2)已知O為坐標(biāo)原點,動點P(x,y)滿足d(O,P)=2,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點P所組成的圖形;
(3)試求點M(2,3)到直線y=x+2的最小直角距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)為了鼓勵市民節(jié)約用水,計劃實行生活用水按階梯式水價計費,每月用水量不超過10噸(含10噸)時,每噸按基礎(chǔ)價收費;每月用水量超過10噸時,超過的部分每噸按調(diào)節(jié)價收費.例如,第一個月用水16噸,需交水費17.8元,第二個月用水20噸,需交水費23元.
(1)求每噸水的基礎(chǔ)價和調(diào)節(jié)價;
(2)設(shè)每月用水量為x噸,應(yīng)交水費為y元,寫出y與x之間的函數(shù)關(guān)系式;
(3)若某月用水12噸,應(yīng)交水費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點P的坐標(biāo)為(0,2),直線y= 與x軸、y軸分別交于點A,B,點M是直線AB上的一個動點,則PM長的最小值為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A在x軸的下方,y軸的右側(cè),到x軸的距離是3,到y(tǒng)軸的距離是2,則點A的坐標(biāo)是( )
A.(2,﹣3)
B.(2,3)
C.(3,﹣2)
D.(﹣3,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=5,AB=8,點E為射線DC上一個動點,把△ADE沿直線AE折疊,當(dāng)點D的對應(yīng)點F剛好落在線段AB的垂直平分線上時,則DE的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC各個頂點的坐標(biāo)分別是O(0,0)、A(2,0)、B(4,2)、C(2,3),過點C與軸平行的直線EF與過點B與軸平行的直線EH交于點E.
求四邊形OABC的面積;
在線段EH上是否存在點P,使四邊形OAPC的面積為7?若不存在,說明理由,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列分解因式正確的是( )
A.﹣a+a3=﹣a(1+a2)
B.2a﹣4b+2=2(a﹣2b)
C.a2﹣4=(a﹣2)2
D.a2﹣2a+1=(a﹣1)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com