【題目】圖象經(jīng)過三點,和()的函數(shù)只可能是( )
A.正比例函數(shù)B.一次函數(shù)C.反比例函數(shù)D.二次函數(shù)
【答案】D
【解析】
依次分析正比例函數(shù),一次函數(shù),可得出這三點不在同一直線上,故不可能是正比例函數(shù)和一次函數(shù),若為反比例函數(shù),分析可得出互相矛盾的結(jié)論,故只能是二次函數(shù).
解:設(shè)A,B,C(),函數(shù)的圖象過點A和B,
(1)若為正比例函數(shù),設(shè)解析式為y=kx, 函數(shù)的圖象過點A和B,,易得k=3,
∴y=3x,
把B代入,得,
解得,則,即C(3,-4),
易知C(3,-4)不在直線y=3x上,故這個函數(shù)不可能是正比例函數(shù);
(2)若為一次函數(shù),且過點B和點C(),設(shè)y=kx+b,則有:,
解得:()
則當(dāng)x=1時,
所以A不在直線上,
故這個函數(shù)不可能是一次函數(shù);
(3)若為反比例函數(shù),設(shè),將A代入可得k=4,即
將B代入,可得,
將C代入,可得,與前面矛盾且無解,
故這個函數(shù)不可能是反比例函數(shù);
(4)綜上可知,點A,B,C不在同一直線上,因此過這三點可得一拋物線,即這個函數(shù)只可能是二次函數(shù).
故選:D
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為評估九年級學(xué)生的學(xué)習(xí)成績狀況,以應(yīng)對即將到來的中考做好教學(xué)調(diào)整,某中學(xué)抽取了部分參加考試的學(xué)生的成績作為樣本分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列問題:
(1)求本中學(xué)成績類別為“中”的人數(shù);
(2)求出扇形圖中,“優(yōu)”所占的百分比,并將條形統(tǒng)計圖補充完整;
(3)該校九年級共有1000人參加了這次考試,請估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績達到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(1,1),B(3,1),C(3,﹣1),D(1,﹣1)構(gòu)成正方形ABCD,以AB為邊做等邊△ABE,則∠ADE和點E的坐標分別為( )
A. 15°和(2,1+)
B. 75°和(2,﹣1)
C. 15°和(2,1+)或75°和(2,﹣1)
D. 15°和(2,1+)或75°和(2,1﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是實驗室中的一種擺動裝置,在地面上,支架是底邊為的等腰直角三角形,擺動臂可繞點旋轉(zhuǎn),擺動臂可繞點旋轉(zhuǎn), ,.
(1)在旋轉(zhuǎn)過程中,當(dāng)為同一直角三角形的頂點時,的長為______________.
(2)若擺動臂順時針旋轉(zhuǎn)90°,點的位置由外的點轉(zhuǎn)到其內(nèi)的點處,連結(jié),如圖2,此時,,的長為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級上學(xué)期,我們探究了“設(shè)計制作長方體形狀的包裝紙盒”,今天我們繼續(xù)運用所學(xué)知識,解決“設(shè)計制作長方體形狀的包裝紙盒”中常見的問題.如圖1是一塊邊長為60cm 的正方形薄鐵片,現(xiàn)在用它來制作成如圖2的一個長方體盒子.
(1)如果要做成一個沒有蓋的長方體盒子,可先在薄鐵片的四個角上截去四個相同的小正方形,邊長為xcm, 然后把四邊折合起來.
①求做成的盒子底面積ycm2與截去小正方形邊長xcm之間的函數(shù)關(guān)系式;
②當(dāng)做成的盒子的底面積為900cm2時,試求該盒子的容積.
(2)如果要做成一個有蓋的長方體盒子,其制作方案要求同時符合下列兩個條件:
①必須在薄鐵片的四個角上各截去一個四邊形(其余部分不能裁截);
②折合后薄鐵片既無空隙、又不重疊地圍成各盒面,請你畫出符合上述制作方案的一種草案(不必說明畫法與根據(jù)),并求當(dāng)?shù)酌娣e為800cm2時,該盒子的高.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖中,,是邊上一點,,過點三點的交于點,點在上,連接
(1)求證:是等腰三角形;
(2)若,請用題意可以推出的結(jié)論說明命題:“一組對邊相等,且一組對角相等的四邊形是平行四邊形”是假命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).
(1)如圖,當(dāng)∠APB=45°時,求AB及PD的長;
(2)當(dāng)∠APB變化,且其它條件不變時,求PD的最大值,及相應(yīng)∠APB的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬度為20 m,長為32 m的矩形地面上修筑同樣寬的道路(圖中陰影部分),余下的部分種上草坪,要使草坪的面積為540 m2 , 求道路的寬.如果設(shè)小路寬為x m,根據(jù)題意,所列方程正確的是( )
A.(20+x)(32+x)=540
B.(20﹣x)(32﹣x)=100
C.(20﹣x)(32﹣x)=540
D.(20-2x)(32﹣2x)=540
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸,y軸分別交于點A(2,0),點B(0,2),動點D以1個單位長度/秒的速度從點A出發(fā)向x軸負半軸運動,同時動點E以個單位長度/秒的速度從點B出發(fā)向y軸負半軸運動,設(shè)運動時間為t秒,以點A為頂點的拋物線經(jīng)過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F
(1)求∠OAB度數(shù);
(2)當(dāng)t為何值時,四邊形ADEF為菱形,請求出此時二次函數(shù)解析式;
(3)是否存在實數(shù)t,使△AGF為直角三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com