【題目】已知△ABC中,D為AB邊上任意一點(diǎn),DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α.
(1)如圖1,當(dāng)α=60°時(shí),求證:△DCE是等邊三角形.
(2)如圖2.當(dāng)α=45°時(shí),求證:① = ;②CE⊥DE.
(3)如圖3,當(dāng)α為任意銳角時(shí),請直接寫出線段CE與DE的數(shù)量關(guān)系(用α表示)
【答案】
(1)證明:如圖1中,
∵∠ABC=∠ACB=60°,
∴△ABC是等邊三角形,
∴BC=BA,
∵DF∥AC,
∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,
∴△BDF是等邊三角形,
∴BF=BD,
∴CF=AD,∠CFD=120°,
∵AE∥BC,
∴∠B+∠DAE=180°,
∴∠DAE=∠CFD=120°,
∵∠CDA=∠B+∠BCD=∠CDE+∠ADE,
∵∠CDE=∠B=60°,
∴∠FCD=∠ADE,
∴△CFD≌△DAE,
∴DC=DE,∵∠CDE=60°,
∴△CDE是等邊三角形
(2)證明:①如圖2中,作FG⊥AC于G.
∵∠B=∠ACB=45°,
∴∠BAC=90°,
∴△ABC是等腰直角三角形,
∵DF∥AC,
∴∠BDF=∠BAC=90°,
∴∠BFD=45°,∠DFC=135°,
∵AE∥BC,
∴∠BAE+∠B=180°,
∴∠DFC=∠DAE=135°,
∵∠CDA=∠B+∠BCD=∠CDE+∠ADE,
∵∠CDE=∠B=45°,
∴∠FCD=∠ADE,
∴△CFD∽△DAE,
∴ = ,
∵四邊形ADFG是矩形,F(xiàn)C= FG,
∴FG=AD,CF= AD,
∴ = ,
②作CE′⊥DE于E′
∵∠CDE=45°,
∴DE′=CDcos45°= CD,
∵DE= CD,
∴點(diǎn)E與點(diǎn)E′重合,
∴CE⊥DE
(3)解:如圖3中,設(shè)AC與DE交于點(diǎn)O.
∵AE∥BC,
∴∠EAO=∠ACB,
∵∠CDE=∠ACB,
∴∠CDO=∠OAE,∵∠COD=∠EOA,
∴△COD∽△EOA,
∴ = ,
∴ = ,∵∠COE=∠DOA,
∴△COE∽△DOA,
∴∠CEO=∠DAO.
∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°,
∵∠CDE=∠B=∠ACB,
∴∠EDC=∠ECD,
∴EC=ED,
∴ =1.
故答案為1
【解析】(1)要證△DCE是等邊三角形,證明△CFD≌△DAE即可;(2)①如圖2中,作FG⊥AC于G.只要證出△CFD∽△DAE,推出,再證明CF=AD即可;②作CE′⊥DE于E′,只要證明點(diǎn)E與點(diǎn)E′重合即可;(3)根據(jù)相似三角形的判定及性質(zhì)證明EC=ED即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的判定與性質(zhì)的相關(guān)知識,掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O(如圖),則圖中全等三角形的對數(shù)為( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠B=50°,P 是邊 AB 上的一個(gè)動(dòng)點(diǎn)(不與頂點(diǎn) A 重合),則∠BPC 的度數(shù)可能是
A. 50° B. 80° C. 100° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O直徑,D是 的中點(diǎn),DE⊥AC交AC的延長線于E,⊙O的切線交AD的延長線于F.
(1)求證:直線DE與⊙O相切;
(2)已知DG⊥AB且DE=4,⊙O的半徑為5,求tan∠F的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直徑AE平分弦CD,交CD于點(diǎn)G,EF∥CD,交AD的延長線于F,AP⊥AC交CD的延長線于點(diǎn)P.
(1)求證:EF是⊙O的切線;
(2)若AC=2,PD= CD,求tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動(dòng)問題情境:
如圖1,在△ABC中,AB=AC,∠BAC=90°,D,E分別是邊AB,AC的中點(diǎn),將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<90°)得到△AD′E′,連接CE′,BD′.探究CE′與BD′的數(shù)量關(guān)系;
探究發(fā)展:
(1)圖1中,猜想CE′與BD′的數(shù)量關(guān)系,并證明;
(2)如圖2,若將問題中的條件“D,E分別是邊AB,AC的中點(diǎn)”改為“D為AB邊上任意一點(diǎn),DE∥BC交AC于點(diǎn)E“,其他條件不變,(1)中CE′與BD′的數(shù)量關(guān)系還成立嗎?請說明理由;
拓展延伸:
(3)如圖3,在△ABC中,AB=AC,∠BAC=60°,點(diǎn)D,E分別在AB,AC上,且DE∥BC,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△AD′E′,連接CE′,BD′,請你仔細(xì)觀察,提出一個(gè)你最關(guān)心的數(shù)學(xué)問題(例如:CE′與BD′相等嗎?).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,共頂點(diǎn)的兩個(gè)三角形△ABC,△AB′C′,若 AB=AB′,AC=AC′,且∠BAC+∠B′AC′=180°,我們稱△ABC 與△AB′C′互為“頂補(bǔ)三角形”.
(1)已知△ABC 與△ADE 互為“頂補(bǔ)三角形”,AF 是△ABC 的中線.
①如圖 2,若△ADE 為等邊三角形時(shí),求證:DE=2AF;
②如圖 3,若△ADE 為任意三角形時(shí),上述結(jié)論是否仍然成立?請說明理由.
(2)如圖4,四邊形 ABCD 中,∠B+∠C=90°.在平面內(nèi)是否存在點(diǎn) P,使△PAD 與△PBC 互為“頂補(bǔ)三角形”, 若存在,請畫出圖形,并證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列解題過程的空白處填上適當(dāng)?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達(dá)式)如圖,已知,、分別平分和,求證:.
證明:∵AB//CD,(已知)
∴∠ABC=∠______.(兩直線平行,內(nèi)錯(cuò)角相等)
∵__________.(已知)
∴∠EBC=∠ABC,(角的平分線定義)
同理,∠FCB=______.
∵∠EBC=∠FCB.(等量代換)
∴BE//CF.(____________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,0),B(0,b),實(shí)數(shù)a、b滿足.
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P的坐標(biāo)是P(-2,x),且,且△PAB的面積為7,求x的值;
(3)如圖,過點(diǎn)B作BC∥x軸,Q是x軸上點(diǎn)A左側(cè)的一動(dòng)點(diǎn)連接QB,BM平分∠QBA,BN平分∠ABC,當(dāng)點(diǎn)Q運(yùn)動(dòng)時(shí)直接寫出____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com