如圖,在△ABC中,AB=AC,延長AB到D,使BD=AB,E為AB中點(diǎn),連接CE、CD,求證:CD=2EC.
分析:取AC的中點(diǎn)F,連接BF,根據(jù)中點(diǎn)的性質(zhì)可得到AE=AF,再根據(jù)SAS判定△ABF≌△ACE,由全等三角形的對應(yīng)邊相等可得到BF=CE,再利用三角形中位線定理得到DC=2BF,即證得了DC=2CE.
解答:證明:取AC的中點(diǎn)F,連接BF,
∵AB=AC,點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn),
∴AE=AF,
∵∠A=∠A,AB=AC,
∴△ABF≌△ACE(SAS),
∴BF=CE,
∵BD=AB,AF=CF,
∴DC=2BF,
∴DC=2CE.
點(diǎn)評:此題主要考查等腰三角形的性質(zhì)及三角形中位線定理的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案