【題目】某工廠生產一種合金薄板(其厚度忽略不計),這些薄板的形狀均為正方形,邊長(單位:cm)在5~50之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎價和浮動價兩部分組成,其中基礎價與薄板的大小無關,是固定不變的,浮動價與薄板的邊長成正比例,在營銷過程中得到了表格中的數據.
薄板的邊長(cm) | 20 | 30 |
出廠價(元/張) | 50 | 70 |
(1)求一張薄板的出廠價與邊長之間滿足的函數關系式;
(2)40cm的薄板,獲得的利潤是26元(利潤=出廠價﹣成本價).
①求一張薄板的利潤與邊長之間滿足的函數關系式;
②當邊長為多少時,出廠一張薄板獲得的利潤最大?最大利潤是多少?
【答案】(1)y=2x+10;(2)①p=﹣x2+2x+10;②出廠一張邊長為25cm的薄板,獲得的利潤最大,最大利潤是35元.
【解析】
試題(1)利用待定系數法求一次函數解析式即可得出答案;
(2)①首先假設一張薄板的利潤為p元,它的成本價為mx2元,由題意,得:p=y-mx2,進而得出m的值,求出函數解析式即可;
②利用二次函數的最值公式求出二次函數的最值即可.
試題解析:⑴設一張薄板的邊長為x cm,它的出廠價為y元,基礎價為n元,浮動價為kx元,
則y=kx+n
由表格中數據得解得
∴y=2x+10
⑵①設一張薄板的利潤為P元,它的成本價為mx2元,由題意得P=y-mx2=2x+10-mx2
將x=40,P=26代入P=2x+10-mx2中,得26=2×40+10-m×402解得m=
∴P=-x2+2x+10 (3分)
②∵a=-<0 ∴當(在5~50之間)時,
即出廠一張邊長為25cm的薄板,所獲得的利潤最大,最大利潤為35元
考點: 二次函數的應用.
科目:初中數學 來源: 題型:
【題目】如圖4,已知拋物線y=ax2+bx+c(a>0)經過點A(2,0),B(6,0),交y軸于點C,且S△ABC=16.
(1)求點C的坐標;
(2)求拋物線的解析式及其對稱軸;
(3)若正方形DEFG內接于拋物線和x軸(邊FG在x軸上,點D,E分別在拋物線上),求S正方形DEFG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=6,N為線段AB上的任意一點,∠BAC的平分線交BC于點D,M是AD上的動點, 連結BM、MN,則BM+MN的最小值是_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】九年一班組織班級聯(lián)歡會,最后進入抽獎環(huán)節(jié),每名同學都有一次抽獎機會,小強拿出一個箱子說:“這個不透明的箱子里裝有紅、白球各1個和若干個黃球,它們除了顏色外其余都相同,誰能同時摸出兩個黃球誰就獲得一等獎”.已知任意摸出一個球是黃球的概率為.
(1)請直接寫出箱子里有黃球 個;
(2)請用列表或樹狀圖求獲得一等獎的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,A(﹣4,0),點C是y軸正半軸上的一點,且∠ACB=90°,AC=BC
(1)如圖①,若點B在第四象限,C(0,2),求點B的坐標;
(2)如圖②,若點B在第二象限,以OC為直角邊在第一象限作等腰Rt△COF,連接BF,交y軸于點M,求CM的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,是全國最大的瓷碗造型建筑坐落于江西景德鎮(zhèn),整體造型概念來自“宋代影青斗笠碗”,造型莊重典雅,象征“萬瓷之母”.小敏為了計算該建筑物的橫斷面(瓷碗橫斷面ABCD為等腰梯形)的高度如圖2,她站在與瓷碗底部AB位于同一水平面的點P處測得瓷碗頂部點D的仰角為45°,而后沿著一段坡度為0.44的小坡PQ步行到點Q(此過程中AD、AP、PQ始終處于同一平面)后測得點D的仰角減少了5°.
已知坡PQ的水平距離為20米,小敏身高忽略不計.
(1)試計算該瓷碗建筑物的高度?
(2)小敏測得AD與水平面夾角約為58°,底座直徑AB約為20米,試計算碗口CD的直徑為多少米?
坡度:坡與水平線夾角的正切值.
參考數據:sin40°≈0.64,tan40°≈0.84,sin58°≈0.85,tan58°≈1.60.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙二人同時從A地出發(fā),沿同一條道路去B地,途中都使用兩種不同的速度Vl與V2(Vl<V2),甲用一半的路程使用速度Vl、另一半的路程使用速度V2;乙用一半的時間使用速度Vl、另一半的時間使用速度V2;關于甲乙二人從A地到達B地的路程與時間的函數圖象及關系,有圖中4個不同的圖示分析.其中橫軸t表示時間,縱軸s表示路程,其中正確的圖示分析為( 。
A. 圖(1) B. 圖(1)或圖(2) C. 圖(3) D. 圖(4)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com