【題目】如圖,ACO的直徑,弦BDAOE,連接BC,過點(diǎn)OOFBCF,若BD16cmAE4cm

1)求O的半徑;

2)求OF的長.

【答案】(1)10;(2)OF2

【解析】

1)連接OB,設(shè)半徑為R, OER4,再由垂徑定理求得BE,根據(jù)勾股定理求出R即可;(2)根據(jù)勾股定理求得BC,證明△CFO∽△CEB,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可

解:(1)連結(jié)OB,設(shè)半徑為R, OER4

AC⊙O的直徑,弦BDACE

BEDE8

Rt△BOE OE2BE2OB2

∴ (R4)282R2

解得R10

(2) 根據(jù)勾股定理得 BC8

可證COF∽△CBE

OF2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件求二次函數(shù)解析式

1)已知一個(gè)二次函數(shù)的圖象經(jīng)過了點(diǎn)A0,﹣1),B1,0),C(﹣12);

2)已知拋物線頂點(diǎn)P(﹣1,﹣8),且過點(diǎn)A0,﹣6);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O經(jīng)過四邊形ABCDB、D兩點(diǎn),并與四條邊分別交于點(diǎn)E、F、G、H,且

1)如圖①,連接BD,若BD是⊙O的直徑,求證:∠A=∠C;

2)如圖②,若的度數(shù)為θ,∠Aα,∠Cβ,請(qǐng)直接寫出θ、αβ之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平移拋物線,下列哪種平移方法不能使平移后的拋物線經(jīng)過原點(diǎn)( )

A.向左平移2個(gè)單位B.向右平移5個(gè)單位

C.向上平移10個(gè)單位D.向下平移20個(gè)單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 軸的兩個(gè)交點(diǎn)間的距離為2

1)若此拋物線的對(duì)稱軸為直線 ,請(qǐng)判斷點(diǎn)(3,3)是否在此拋物線上?

2)若此拋物線的頂點(diǎn)為(St),請(qǐng)證明

3)當(dāng)時(shí),求的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點(diǎn),且ODBC,ODAC交于點(diǎn)E

1)若∠B=64°,求∠CAD的度數(shù);

2)若AB=10,DE=2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.

(1)若O、C、A在一條直線上,連AD、BC,分別取AD、BC的中點(diǎn)M、N如圖(1),求出線段MN、AC之間的數(shù)量關(guān)系;

(2)若將△OCD繞O旋轉(zhuǎn)到如圖(2)的位置,連AD、BC,取BC的中點(diǎn)M,請(qǐng)?zhí)骄烤段OM、AD之間的關(guān)系,并證明你的結(jié)論;

(3)若將△OCD由圖(1)的位置繞O順時(shí)針旋轉(zhuǎn)角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,請(qǐng)直接寫出此時(shí)△ABC的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cmBC=7cm.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)達(dá)到終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).

1)如果P,Q分別從AB同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?

2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,PQ的長度等于5cm?

3)在(1)中,△PQB的面積能否等于7cm2?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案